Maximum Sum Alternating Subarray (original) (raw)
Last Updated : 18 Nov, 2021
Given an array arr[] of size N, the task is to find the maximum alternating sum of a subarray possible for a given array.
Alternating Subarray Sum: Considering a subarray {arr[i], arr[j]}, alternating sum of the subarray is arr[i] - arr[i + 1] + arr[i + 2] - ........ (+ / -) arr[j].
Examples:
Input: arr[] = {-4, -10, 3, 5}
Output: 9
Explanation: Subarray {arr[0], arr[2]} = {-4, -10, 3}. Therefore, the sum of this subarray is 9.Input: arr[] = {-1, 2, -1, 4, 7}
Output: 7
Approach: The given problem can be solved by using Dynamic Programming. Follow the steps below to solve the problem:
- Initialize a variable, say sum as 0, which will hold a maximum alternating subarray sum and a variable, say sumSoFar, to store the sum of subarrays starting from even indices in the 1st loop and the sum starting from odd indices, in the 2nd loop.
- In every iteration of both the loops, update sum as max(sum, sumSoFar).
- Finally, return the maximum alternating sum stored in the sum variable.
Below is the implementation of the above approach:
C++ `
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std;
// Function to find the maximum alternating // sum of a subarray for the given array int alternatingSum(int arr[],int n) { int sum = 0; int sumSoFar = 0;
// Traverse the array for (int i = 0; i < n; i++) {
// Store sum of subarrays
// starting at even indices
if (i % 2 == 1) {
sumSoFar -= arr[i];
}
else {
sumSoFar = max(
sumSoFar + arr[i], arr[i]);
}
// Update sum
sum = max(sum, sumSoFar);
}
sumSoFar = 0;
// Traverse the array for (int i = 1; i < n; i++) {
// Store sum of subarrays
// starting at odd indices
if (i % 2 == 0) {
sumSoFar -= arr[i];
}
else {
sumSoFar = max(
sumSoFar + arr[i], arr[i]);
}
// Update sum
sum = max(sum, sumSoFar);
} return sum; }
// Driver code int main() {
// Given Input int arr[] ={ -4, -10, 3, 5 }; int n = sizeof(arr)/sizeof(arr[0]);
// Function call int ans = alternatingSum(arr,n);
cout<<ans<<endl; return 0; }
// This code is contributed by Potta Lokesh
Java
// Java implementation for the above approach
import java.io.*;
class GFG {
// Function to find the maximum alternating
// sum of a subarray for the given array
public static int alternatingSum(int[] arr)
{
int sum = 0;
int sumSoFar = 0;
// Traverse the array
for (int i = 0; i < arr.length; i++) {
// Store sum of subarrays
// starting at even indices
if (i % 2 == 1) {
sumSoFar -= arr[i];
}
else {
sumSoFar = Math.max(
sumSoFar + arr[i], arr[i]);
}
// Update sum
sum = Math.max(sum, sumSoFar);
}
sumSoFar = 0;
// Traverse the array
for (int i = 1; i < arr.length; i++) {
// Store sum of subarrays
// starting at odd indices
if (i % 2 == 0) {
sumSoFar -= arr[i];
}
else {
sumSoFar = Math.max(
sumSoFar + arr[i], arr[i]);
}
// Update sum
sum = Math.max(sum, sumSoFar);
}
return sum;
}
// Driver code
public static void main(String[] args)
{
// Given Input
int arr[] = new int[] { -4, -10, 3, 5 };
// Function call
int ans = alternatingSum(arr);
System.out.println(ans);
}
}
Python3
Python implementation for the above approach
Function to find the maximum alternating
sum of a subarray for the given array
def alternatingSum(arr, n): sum_ = 0 sumSoFar = 0
# Traverse the array
for i in range(n):
# Store sum of subarrays
# starting at even indices
if i % 2 == 1:
sumSoFar -= arr[i]
else:
sumSoFar = max(arr[i], sumSoFar + arr[i])
# Update sum
sum_ = max(sum_, sumSoFar)
sumSoFar = 0
# Traverse array
for i in range(1, n):
# Store sum of subarrays
# starting at odd indices
if i % 2 == 0:
sumSoFar -= arr[i]
else:
sumSoFar = max(arr[i], sumSoFar + arr[i])
sum_ = max(sum_, sumSoFar)
# update sum
return sum_
given array
arr = [-4, -10, 3, 5] n = len(arr)
return sum
ans = alternatingSum(arr, n) print(ans)
This code is contributed by Parth Manchanda
C#
// C# implementation for the above approach using System; using System.Collections.Generic;
class GFG{
// Function to find the maximum alternating // sum of a subarray for the given array static int alternatingSum(int []arr,int n) { int sum = 0; int sumSoFar = 0;
// Traverse the array
for(int i = 0; i < n; i++)
{
// Store sum of subarrays
// starting at even indices
if (i % 2 == 1)
{
sumSoFar -= arr[i];
}
else
{
sumSoFar = Math.Max(
sumSoFar + arr[i], arr[i]);
}
// Update sum
sum = Math.Max(sum, sumSoFar);
}
sumSoFar = 0;
// Traverse the array
for(int i = 1; i < n; i++)
{
// Store sum of subarrays
// starting at odd indices
if (i % 2 == 0)
{
sumSoFar -= arr[i];
}
else
{
sumSoFar = Math.Max(
sumSoFar + arr[i], arr[i]);
}
// Update sum
sum = Math.Max(sum, sumSoFar);
}
return sum;
}
// Driver code public static void Main() {
// Given Input
int []arr = { -4, -10, 3, 5 };
int n = arr.Length;
// Function call
int ans = alternatingSum(arr,n);
Console.Write(ans);
} }
// This code is contributed by SURENDRA_GANGWAR
JavaScript
`
Time Complexity: O(N)
Auxiliary Space: O(1)