Maximum Sum Alternating Subarray (original) (raw)

Last Updated : 18 Nov, 2021

Given an array arr[] of size N, the task is to find the maximum alternating sum of a subarray possible for a given array.

Alternating Subarray Sum: Considering a subarray {arr[i], arr[j]}, alternating sum of the subarray is arr[i] - arr[i + 1] + arr[i + 2] - ........ (+ / -) arr[j].

Examples:

Input: arr[] = {-4, -10, 3, 5}
Output: 9
Explanation: Subarray {arr[0], arr[2]} = {-4, -10, 3}. Therefore, the sum of this subarray is 9.

Input: arr[] = {-1, 2, -1, 4, 7}
Output: 7

Approach: The given problem can be solved by using Dynamic Programming. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++ `

// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std;

// Function to find the maximum alternating // sum of a subarray for the given array int alternatingSum(int arr[],int n) { int sum = 0; int sumSoFar = 0;

// Traverse the array for (int i = 0; i < n; i++) {

// Store sum of subarrays
// starting at even indices
if (i % 2 == 1) {

  sumSoFar -= arr[i];
}
else {

  sumSoFar = max(
    sumSoFar + arr[i], arr[i]);
}

// Update sum
sum = max(sum, sumSoFar);

}

sumSoFar = 0;

// Traverse the array for (int i = 1; i < n; i++) {

// Store sum of subarrays
// starting at odd indices
if (i % 2 == 0) {
  sumSoFar -= arr[i];
}
else {
  sumSoFar = max(
    sumSoFar + arr[i], arr[i]);
}

// Update sum
sum = max(sum, sumSoFar);

} return sum; }

// Driver code int main() {

// Given Input int arr[] ={ -4, -10, 3, 5 }; int n = sizeof(arr)/sizeof(arr[0]);

// Function call int ans = alternatingSum(arr,n);

cout<<ans<<endl; return 0; }

// This code is contributed by Potta Lokesh

Java

// Java implementation for the above approach

import java.io.*;

class GFG {

// Function to find the maximum alternating
// sum of a subarray for the given array
public static int alternatingSum(int[] arr)
{
    int sum = 0;
    int sumSoFar = 0;

    // Traverse the array
    for (int i = 0; i < arr.length; i++) {

        // Store sum of subarrays
        // starting at even indices
        if (i % 2 == 1) {

            sumSoFar -= arr[i];
        }
        else {

            sumSoFar = Math.max(
                sumSoFar + arr[i], arr[i]);
        }

        // Update sum
        sum = Math.max(sum, sumSoFar);
    }

    sumSoFar = 0;

    // Traverse the array
    for (int i = 1; i < arr.length; i++) {

        // Store sum of subarrays
        // starting at odd indices
        if (i % 2 == 0) {
            sumSoFar -= arr[i];
        }
        else {
            sumSoFar = Math.max(
                sumSoFar + arr[i], arr[i]);
        }

        // Update sum
        sum = Math.max(sum, sumSoFar);
    }
    return sum;
}

// Driver code
public static void main(String[] args)
{

    // Given Input
    int arr[] = new int[] { -4, -10, 3, 5 };

    // Function call
    int ans = alternatingSum(arr);

    System.out.println(ans);
}

}

Python3

Python implementation for the above approach

Function to find the maximum alternating

sum of a subarray for the given array

def alternatingSum(arr, n): sum_ = 0 sumSoFar = 0

# Traverse the array
for i in range(n):
  
  # Store sum of subarrays
   # starting at even indices
    if i % 2 == 1:
        sumSoFar -= arr[i]
    else:
        sumSoFar = max(arr[i], sumSoFar + arr[i])
        
        # Update sum
    sum_ = max(sum_, sumSoFar)

sumSoFar = 0

# Traverse array
for i in range(1, n):
  
  # Store sum of subarrays
  # starting at odd indices
    if i % 2 == 0:
        sumSoFar -= arr[i]
    else:
        sumSoFar = max(arr[i], sumSoFar + arr[i])
    sum_ = max(sum_, sumSoFar)
    
    # update sum
return sum_

given array

arr = [-4, -10, 3, 5] n = len(arr)

return sum

ans = alternatingSum(arr, n) print(ans)

This code is contributed by Parth Manchanda

C#

// C# implementation for the above approach using System; using System.Collections.Generic;

class GFG{

// Function to find the maximum alternating // sum of a subarray for the given array static int alternatingSum(int []arr,int n) { int sum = 0; int sumSoFar = 0;

// Traverse the array
for(int i = 0; i < n; i++)
{

    // Store sum of subarrays
    // starting at even indices
    if (i % 2 == 1)
    {
        sumSoFar -= arr[i];
    }
    else 
    {
        sumSoFar = Math.Max(
        sumSoFar + arr[i], arr[i]);
    }
    
    // Update sum
    sum = Math.Max(sum, sumSoFar);
}

sumSoFar = 0;

// Traverse the array
for(int i = 1; i < n; i++)
{

    // Store sum of subarrays
    // starting at odd indices
    if (i % 2 == 0)
    {
        sumSoFar -= arr[i];
    }
    else 
    {
        sumSoFar = Math.Max(
        sumSoFar + arr[i], arr[i]);
    }
    
    // Update sum
    sum = Math.Max(sum, sumSoFar);
}
return sum;

}

// Driver code public static void Main() {

// Given Input
int []arr = { -4, -10, 3, 5 };
int n = arr.Length;

// Function call
int ans = alternatingSum(arr,n);

Console.Write(ans);

} }

// This code is contributed by SURENDRA_GANGWAR

JavaScript

`

Time Complexity: O(N)
Auxiliary Space: O(1)

Similar Reads