Maximum Sum Subsequence (original) (raw)
Last Updated : 25 Jan, 2022
Given an array arr[] of size N, the task is to find the maximum sum non-empty subsequence present in the given array.
Examples:
Input: arr[] = { 2, 3, 7, 1, 9 }
Output: 22
Explanation:
Sum of the subsequence { arr[0], arr[1], arr[2], arr[3], arr[4] } is equal to 22, which is the maximum possible sum of any subsequence of the array.
Therefore, the required output is 22.Input: arr[] = { -2, 11, -4, 2, -3, -10 }
Output: 13
Explanation:
Sum of the subsequence { arr[1], arr[3] } is equal to 13, which is the maximum possible sum of any subsequence of the array.
Therefore, the required output is 13.
Naive Approach: The simplest approach to solve this problem is to generate all possible non-empty subsequences of the array and calculate the sum of each subsequence of the array. Finally, print the maximum sum obtained from the subsequence.
Time Complexity: O(N * 2N)
Auxiliary Space: O(N)
Efficient Approach: The idea is to traverse the array and calculate the sum of positive elements of the array and print the sum obtained. Follow the steps below to solve the problem:
- Check if the largest element of the array is greater than 0 or not. If found to be true, then traverse the array and print the sum of all positive elements of the array.
- Otherwise, print the largest element present in the array.
Below is the implementation of the above approach:
C++ `
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std;
// Function to print the maximum // non-empty subsequence sum int MaxNonEmpSubSeq(int a[], int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0;
// Stores the largest element
// in the array
int max = *max_element(a, a + n);
if (max <= 0) {
return max;
}
// Traverse the array
for (int i = 0; i < n; i++) {
// If a[i] is greater than 0
if (a[i] > 0) {
// Update sum
sum += a[i];
}
}
return sum;
}
// Driver Code int main() { int arr[] = { -2, 11, -4, 2, -3, -10 }; int N = sizeof(arr) / sizeof(arr[0]);
cout << MaxNonEmpSubSeq(arr, N);
return 0;
}
Java
// Java program to implement // the above approach import java.util.*; class GFG {
// Function to print the maximum // non-empty subsequence sum static int MaxNonEmpSubSeq(int a[], int n) {
// Stores the maximum non-empty
// subsequence sum in an array
int sum = 0;
// Stores the largest element
// in the array
int max = a[0];
for(int i = 1; i < n; i++)
{
if(max < a[i])
{
max = a[i];
}
}
if (max <= 0)
{
return max;
}
// Traverse the array
for (int i = 0; i < n; i++)
{
// If a[i] is greater than 0
if (a[i] > 0)
{
// Update sum
sum += a[i];
}
}
return sum;
}
// Driver code public static void main(String[] args) { int arr[] = { -2, 11, -4, 2, -3, -10 }; int N = arr.length;
System.out.println(MaxNonEmpSubSeq(arr, N));
} }
// This code is contributed by divyesh072019
Python3
Python3 program to implement
the above approach
Function to print the maximum
non-empty subsequence sum
def MaxNonEmpSubSeq(a, n):
# Stores the maximum non-empty
# subsequence sum in an array
sum = 0
# Stores the largest element
# in the array
maxm = max(a)
if (maxm <= 0):
return maxm
# Traverse the array
for i in range(n):
# If a[i] is greater than 0
if (a[i] > 0):
# Update sum
sum += a[i]
return sum
Driver Code
if name == 'main':
arr = [ -2, 11, -4, 2, -3, -10 ]
N = len(arr)
print(MaxNonEmpSubSeq(arr, N))
This code is contributed by mohit kumar 29
C#
// C# program to implement // the above approach using System;
class GFG{
// Function to print the maximum // non-empty subsequence sum static int MaxNonEmpSubSeq(int[] a, int n) {
// Stores the maximum non-empty
// subsequence sum in an array
int sum = 0;
// Stores the largest element
// in the array
int max = a[0];
for(int i = 1; i < n; i++)
{
if (max < a[i])
{
max = a[i];
}
}
if (max <= 0)
{
return max;
}
// Traverse the array
for(int i = 0; i < n; i++)
{
// If a[i] is greater than 0
if (a[i] > 0)
{
// Update sum
sum += a[i];
}
}
return sum;
}
// Driver Code static void Main() { int[] arr = { -2, 11, -4, 2, -3, -10 }; int N = arr.Length;
Console.WriteLine(MaxNonEmpSubSeq(arr, N));
} }
// This code is contributed by divyeshrabadiya07
JavaScript
`
Time Complexity: O(N)
Auxiliary Space: O(1)