Minimizing Maximum Absolute Subarray Sums (original) (raw)

Last Updated : 10 Feb, 2024

Given an array **arr[] of size **N, we can choose any real number **X which when subtracted from all the elements of the array then the **maximum absolute subarray sum among all the subarrays is **minimum. The task is to return the minimum of maximum absolute sum among all the subarrays.

**Note: The answer should be correct upto **6 decimal places.

**Constraints:

**Examples:

**Input: N = 3, arr[] = {50, -50, 50}
**Output: 50.000000
**Explanation: We can subtract X = 0 from all the elements of arr[], so the new array becomes {50, -50, 50}. Now, for all the subarrays:

So the maximum of all subarrays is 50. Subtracting any other number from arr[] will result to a greater value of maximum of all subarrays.

**Input: N = 3, arr[] = {1, 2, 3}
**Output: 1.000000
**Explanation: We can subtract X = 2 from all the elements of arr[] so the new array becomes {-1, 0, 1}. Now, for all the subarrays:

So the maximum of all subarrays is 1. Subtracting any other number from arr[] will result to a greater value of maximum of all subarrays.

**Approach: The problem can be solved using the following approach:

If we observe carefully, then there will be an optimal value of **X for which the maximum absolute sum among all subarrays will be minimum. Now, if we increase or decrease the value of then the maximum absolute sum among all subarrays will keep on increasing. Since this is same as Unimodal functions, we can apply **Ternary Searchto find the optimal value of **X. As we are only concerned with the maximum absolute value of the subarray, we can calculate it by returning the maximum of largest subarray sum and **abs(smallest subarray sum) using Kadane's Algorithm. We will consider 2 points **mid1 and **mid2 in our search space [-104, 104] and store the corresponding values of maximum absolute sum of subarray in **val1 and **val2 respectively. Now, we can have 3 cases:

Since the error limit is 1e-6 and in each iteration we are reducing our search space by a factor of at least 2/3. Therefore, **200 iterations are sufficient to get our answer.

Step-by-step approach:

Below is the implementation of the above approach:

C++ `

#include <bits/stdc++.h> #define ll long long using namespace std;

// Method to calculate the minimum subarray sum using // Kadane's Algorithm double getMinSubarraySum(double* arr, ll N) { double sum = 0, ans = arr[0]; for (int i = 0; i < N; i++) { sum += arr[i]; ans = min(ans, sum); if (sum > 0) sum = 0; } return ans; }

// Method to calculate the maximum subarray sum using // Kadane's Algorithm double getMaxSubarraySum(double* arr, ll N) { double sum = 0, ans = arr[0]; for (int i = 0; i < N; i++) { sum += arr[i]; ans = max(ans, sum); if (sum < 0) sum = 0; } return ans; }

// Minimize the maximum absolute value of sum of any // subarray double solve(double* arr, ll N, double X) { // Update the array by subtracting X from each element for (int i = 0; i < N; i++) arr[i] -= X;

// Calculate the maximum absolute sum among all
// subarrays using minimum subarray sum and maximum
// subarray sum
double ans = max(abs(getMaxSubarraySum(arr, N)),
                abs(getMinSubarraySum(arr, N)));

// Retrieve the original values of array by adding X to
// each element
for (int i = 0; i < N; i++)
    arr[i] += X;

return ans;

}

int main() {

ll N = 3;
double arr[] = { 1, 2, 3 };

// Run 200 iterations to get our answer
ll cnt = 200;

// Initialize the lower and upper limit of our search
// space
double lo = -1e4, hi = 1e4;

while (cnt--) {
    double mid1 = lo + (hi - lo) / 3.0;
    double mid2 = hi - (hi - lo) / 3.0;

    // Calculate the maximum sum when X = mid1
    double val1 = solve(arr, N, mid1);

    // Calculate the maximum sum when X = mid2
    double val2 = solve(arr, N, mid2);

    // Minimize the search space
    if (val1 == val2) {
        lo = mid1;
        hi = mid2;
    }
    else if (val1 < val2) {
        hi = mid2;
    }
    else {
        lo = mid1;
    }
}
cout << fixed << setprecision(6) << solve(arr, N, lo)
    << "\n";
return 0;

}

Java

import java.util.Arrays;

public class Main { // Method to calculate the minimum subarray sum using // Kadane's Algorithm static double getMinSubarraySum(double[] arr, int N) { double sum = 0, ans = arr[0]; for (int i = 0; i < N; i++) { sum += arr[i]; ans = Math.min(ans, sum); if (sum > 0) sum = 0; } return ans; }

// Method to calculate the maximum subarray sum using
// Kadane's Algorithm
static double getMaxSubarraySum(double[] arr, int N) {
    double sum = 0, ans = arr[0];
    for (int i = 0; i < N; i++) {
        sum += arr[i];
        ans = Math.max(ans, sum);
        if (sum < 0)
            sum = 0;
    }
    return ans;
}

// Minimize the maximum absolute value of the sum of any
// subarray
static double solve(double[] arr, int N, double X) {
    // Update the array by subtracting X from each element
    for (int i = 0; i < N; i++)
        arr[i] -= X;

    // Calculate the maximum absolute sum among all
    // subarrays using the minimum subarray sum and maximum
    // subarray sum
    double ans = Math.max(Math.abs(getMaxSubarraySum(arr, N)),
            Math.abs(getMinSubarraySum(arr, N)));

    // Retrieve the original values of the array by adding X to
    // each element
    for (int i = 0; i < N; i++)
        arr[i] += X;

    return ans;
}

public static void main(String[] args) {
    int N = 3;
    double[] arr = {1, 2, 3};

    // Run 200 iterations to get our answer
    int cnt = 200;

    // Initialize the lower and upper limit of our search space
    double lo = -1e4, hi = 1e4;

    while (cnt-- > 0) {
        double mid1 = lo + (hi - lo) / 3.0;
        double mid2 = hi - (hi - lo) / 3.0;

        // Calculate the maximum sum when X = mid1
        double val1 = solve(Arrays.copyOf(arr, N), N, mid1);

        // Calculate the maximum sum when X = mid2
        double val2 = solve(Arrays.copyOf(arr, N), N, mid2);

        // Minimize the search space
        if (val1 == val2) {
            lo = mid1;
            hi = mid2;
        } else if (val1 < val2) {
            hi = mid2;
        } else {
            lo = mid1;
        }
    }
    System.out.printf("%.6f%n", solve(arr, N, lo));
}

}

Python3

def get_min_subarray_sum(arr, N): """ Function to find the minimum subarray sum using Kadane's algorithm. """ sum_val = 0 ans = arr[0] for i in range(N): sum_val += arr[i] ans = min(ans, sum_val) if sum_val > 0: sum_val = 0 return ans

def get_max_subarray_sum(arr, N): """ Function to find the maximum subarray sum using Kadane's algorithm. """ sum_val = 0 ans = arr[0] for i in range(N): sum_val += arr[i] ans = max(ans, sum_val) if sum_val < 0: sum_val = 0 return ans

def solve(arr, N, X): """ Function to solve the problem by modifying the array and finding the maximum absolute subarray sum. """ # Subtract X from each element in the array for i in range(N): arr[i] -= X

# Find the maximum absolute subarray sum after modification
max_abs_sum = max(abs(get_max_subarray_sum(arr, N)), abs(get_min_subarray_sum(arr, N)))

# Add X back to each element in the array to restore the original array
for i in range(N):
    arr[i] += X

return max_abs_sum

def main(): N = 3 arr = [1, 2, 3] cnt = 200 lo, hi = -1e4, 1e4

# Perform ternary search to find the optimal value of X
while cnt > 0:
    mid1 = lo + (hi - lo) / 3.0
    mid2 = hi - (hi - lo) / 3.0

    val1 = solve(arr, N, mid1)
    val2 = solve(arr, N, mid2)

    # Adjust the search range based on the comparison of values
    if val1 == val2:
        lo = mid1
        hi = mid2
    elif val1 < val2:
        hi = mid2
    else:
        lo = mid1

    cnt -= 1

# Print the result with 6 decimal places
print(f"{solve(arr, N, lo):.6f}")

if name == "main": main()

C#

using System;

class MainClass { // Method to calculate the minimum subarray sum using // Kadane's Algorithm static double GetMinSubarraySum(double[] arr, int N) { double sum = 0, ans = arr[0]; for (int i = 0; i < N; i++) { sum += arr[i]; ans = Math.Min(ans, sum); if (sum > 0) sum = 0; } return ans; }

// Method to calculate the maximum subarray sum using
// Kadane's Algorithm
static double GetMaxSubarraySum(double[] arr, int N)
{
    double sum = 0, ans = arr[0];
    for (int i = 0; i < N; i++)
    {
        sum += arr[i];
        ans = Math.Max(ans, sum);
        if (sum < 0)
            sum = 0;
    }
    return ans;
}

// Minimize the maximum absolute value of the sum of any
// subarray
static double Solve(double[] arr, int N, double X)
{
    // Update the array by subtracting X from each element
    for (int i = 0; i < N; i++)
        arr[i] -= X;

    // Calculate the maximum absolute sum among all
    // subarrays using the minimum subarray sum and maximum
    // subarray sum
    double ans = Math.Max(Math.Abs(GetMaxSubarraySum(arr, N)),
            Math.Abs(GetMinSubarraySum(arr, N)));

    // Retrieve the original values of the array by adding X to
    // each element
    for (int i = 0; i < N; i++)
        arr[i] += X;

    return ans;
}

public static void Main(string[] args)
{
    int N = 3;
    double[] arr = { 1, 2, 3 };

    // Run 200 iterations to get our answer
    int cnt = 200;

    // Initialize the lower and upper limit of our search space
    double lo = -1e4, hi = 1e4;

    while (cnt-- > 0)
    {
        double mid1 = lo + (hi - lo) / 3.0;
        double mid2 = hi - (hi - lo) / 3.0;

        // Calculate the maximum sum when X = mid1
        double val1 = Solve((double[])arr.Clone(), N, mid1);

        // Calculate the maximum sum when X = mid2
        double val2 = Solve((double[])arr.Clone(), N, mid2);

        // Minimize the search space
        if (val1 == val2)
        {
            lo = mid1;
            hi = mid2;
        }
        else if (val1 < val2)
        {
            hi = mid2;
        }
        else
        {
            lo = mid1;
        }
    }
    Console.WriteLine($"{Solve(arr, N, lo):F6}");
}

}

JavaScript

// Method to calculate the minimum subarray sum using Kadane's Algorithm function getMinSubarraySum(arr) { let sum = 0, ans = arr[0]; for (let i = 0; i < arr.length; i++) { sum += arr[i]; ans = Math.min(ans, sum); if (sum > 0) sum = 0; } return ans; }

// Method to calculate the maximum subarray sum using Kadane's Algorithm function getMaxSubarraySum(arr) { let sum = 0, ans = arr[0]; for (let i = 0; i < arr.length; i++) { sum += arr[i]; ans = Math.max(ans, sum); if (sum < 0) sum = 0; } return ans; }

// Minimize the maximum absolute value of sum of any subarray function solve(arr, X) { // Update the array by subtracting X from each element for (let i = 0; i < arr.length; i++) arr[i] -= X;

// Calculate the maximum absolute sum among all subarrays using minimum subarray sum and maximum subarray sum
let ans = Math.max(Math.abs(getMaxSubarraySum(arr)), Math.abs(getMinSubarraySum(arr)));

// Retrieve the original values of array by adding X to each element
for (let i = 0; i < arr.length; i++)
    arr[i] += X;

return ans;

}

// Main function function main() { const N = 3; const arr = [1, 2, 3];

// Run 200 iterations to get our answer
let cnt = 200;

// Initialize the lower and upper limit of our search space
let lo = -1e4, hi = 1e4;

while (cnt--) {
    let mid1 = lo + (hi - lo) / 3.0;
    let mid2 = hi - (hi - lo) / 3.0;

    // Calculate the maximum sum when X = mid1
    let val1 = solve(arr.slice(), mid1);

    // Calculate the maximum sum when X = mid2
    let val2 = solve(arr.slice(), mid2);

    // Minimize the search space
    if (val1 === val2) {
        lo = mid1;
        hi = mid2;
    } else if (val1 < val2) {
        hi = mid2;
    } else {
        lo = mid1;
    }
}
console.log(solve(arr, lo).toFixed(6));

}

// Run the main function main(); //This code is contributed by Utkarsh

`

**Time Complexity: O(N * 2 * log3(M)) = O(N * log3(M)), where N is the size of arr[] and M is the maximum element in arr[].
**Auxiliary Space: O(1)