Minimum substring reversals required to make given Binary String alternating (original) (raw)
Last Updated : 01 Jun, 2021
Given a binary string S of length N, the task is to count the minimum number substrings of S that is required to be reversed to make the string S alternating. If it is not possible to make string alternating, then print "-1".
Examples:
Input: S = "10001110"
Output: 2
Explanation:
In the first operation, reversing the substring {S[3], .., S[6]} modifies the string to "10110010".
In the second operation, reversing the substring **{S[4], .. S[5]}**modifies the string to "10101010", which is alternating.Input: S = "100001"
Output: -1
Explanation: Not possible to obtain an alternating binary string.
Approach: The idea is based on the observation that when a substring s[L, R] is reversed, then no more than two pairs s[L - 1], s[L] and s[R], S[R + 1] are changed. Moreover, one pair should be a consecutive pair of 00 and the other 11. So, the minimum number of operations can be obtained by pairing 00 with 11 or with the left/right border of S. Thus, the required number of operations is half of the number of consecutive pairs of the same character. Follow the steps below to solve the problem:
- Traverse the string S to count the number of 1s and 0s and store them in sum1 and sum0 respectively.
- If the absolute difference of sum1 and sum0 > 1, then print "-1".
- Otherwise, find the count of consecutive characters that are the same in the string S. Let that count be K for 1 and L for 0.
- After completing the above steps, print the value of K as the result.
Below is the implementation of the above approach:
C++ `
// C++ program for the above approach #include <bits/stdc++.h> using namespace std;
// Function to count the minimum number // of substrings required to be reversed // to make the string S alternating int minimumReverse(string s, int n) { // Store count of consecutive pairs int k = 0 , l = 0 ;
// Stores the count of 1s and 0s
int sum1 = 0, sum0 = 0;
// Traverse through the string
for (int i = 1; i < n; i++) {
if (s[i] == '1')
// Increment 1s count
sum1++;
else
// Increment 0s count
sum0++;
// Increment K if consecutive
// same elements are found
if (s[i] == s[i - 1]&& s[i] == '0')
k++;
else if( s[i] == s[i - 1]&& s[i] == '1')
l++;
}
// Increment 1s count
if(s[0]=='1')
sum1++;
else // Increment 0s count
sum0++;
// Check if it is possible or not
if (abs(sum1 - sum0) > 1)
return -1;
// Otherwise, print the number
// of required operations
return max(k , l );
}
// Driver Code int main() { string S = "10001"; int N = S.size();
// Function Call
cout << minimumReverse(S, N);
return 0;
}
Java
// Java program for the above approach import java.util.; import java.lang.;
class GFG {
// Function to count the minimum number // of substrings required to be reversed // to make the string S alternating static int minimumReverse(String s, int n) {
// Store count of consecutive pairs
int k = 0 , l = 0 ;
// Stores the count of 1s and 0s
int sum1 = 0, sum0 = 0;
// Traverse through the string
for (int i = 1; i < n; i++)
{
if (s.charAt(i) == '1')
// Increment 1s count
sum1++;
else
// Increment 0s count
sum0++;
// Increment K if consecutive
// same elements are found
if (s.charAt(i) == s.charAt(i - 1) && s.charAt(i) == '0')
k++;
else if( s.charAt(i) == s.charAt(i - 1) && s.charAt(i) == '1')
l++;
}
// Increment 1s count
if(s.charAt(0)=='1')
sum1++;
else // Increment 0s count
sum0++;
// Check if it is possible or not
if (Math.abs(sum1 - sum0) > 1)
return -1;
// Otherwise, print the number
// of required operations
return Math.max(k , l);
}
// Driver code public static void main (String[] args) { String S = "10001"; int N = S.length();
// Function Call
System.out.print(minimumReverse(S, N));
} }
// This code is contributed by offbeat
Python3
Python program for the above approach
Function to count the minimum number
of substrings required to be reversed
to make the string S alternating
def minimumReverse(s, n):
# Store count of consecutive pairs
k = 0;
l = 0;
# Stores the count of 1s and 0s
sum1 = 0;
sum0 = 0;
# Traverse through the string
for i in range(1, n):
if (s[i] == '1'):
# Increment 1s count
sum1 += 1;
else:
# Increment 0s count
sum0 += 1;
# Increment K if consecutive
# same elements are found
if (s[i] == s[i - 1] and s[i] == '0'):
k += 1;
elif (s[i] == s[i - 1] and s[i] == '1'):
l += 1;
# Increment 1s count
if (s[0] == '1'):
sum1 += 1;
else: # Increment 0s count
sum0 += 1;
# Check if it is possible or not
if (abs(sum1 - sum0) > 1):
return -1;
# Otherwise, print the number
# of required operations
return max(k, l);
Driver code
if name == 'main': S = "10001"; N = len(S);
# Function Call
print(minimumReverse(S, N));
This code is contributed by shikhasingrajput
C#
// C# program for the above approach using System;
public class GFG {
// Function to count the minimum number // of substrings required to be reversed // to make the string S alternating static int minimumReverse(String s, int n) {
// Store count of consecutive pairs
int k = 0 , l = 0 ;
// Stores the count of 1s and 0s
int sum1 = 0, sum0 = 0;
// Traverse through the string
for (int i = 1; i < n; i++)
{
if (s[i] == '1')
// Increment 1s count
sum1++;
else
// Increment 0s count
sum0++;
// Increment K if consecutive
// same elements are found
if (s[i] == s[i-1] && s[i] == '0')
k++;
else if( s[i] == s[i-1] && s[i] == '1')
l++;
}
// Increment 1s count
if(s[0] == '1')
sum1++;
else // Increment 0s count
sum0++;
// Check if it is possible or not
if (Math.Abs(sum1 - sum0) > 1)
return -1;
// Otherwise, print the number
// of required operations
return Math.Max(k , l);
}
// Driver code public static void Main(String[] args) { String S = "10001"; int N = S.Length;
// Function Call
Console.Write(minimumReverse(S, N));
} }
// This code is contributed by shikhasingrajput
JavaScript
`
Time Complexity: O(N)
Auxiliary Space: O(1)