Minimum swap required to convert binary tree to binary search tree (original) (raw)

Last Updated : 25 Nov, 2024

Try it on GfG Practice redirect icon

Given an array **arr[] which represents a Complete Binary Tree i.e., if **index i is the **parent, index **2*i + 1 is the left child and index 2*i + 2 is **the right child. The task is to find the **minimum number of **swaps required to convert it into a **Binary Search Tree.

**Examples:

**Input: arr[] = [5, 6, 7, 8, 9, 10, 11]
**Output: 3
**Explanation:
Binary tree of the given array:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-1

Swap 1: Swap node 8 with node 5.
Swap 2: Swap node 9 with node 10.
Swap 3: Swap node 10 with node 7.

So, minimum 3 swaps are required to obtain the below binary search tree:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-3

**Input: arr[] = [1, 2, 3]
**Output: 1
**Explanation:
Binary tree of the given array:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-2

After swapping node 1 with node 2, obtain the below binary search tree:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-4

**Approach:

The idea is to use the fact that **inorder traversalof **Binary Search Tree is in **increasing order of their value.
So, find the inorder traversal of the Binary Tree and **store it in the array and try to **sort the array. Theminimum number of swap required to get the array sorted will be the answer.

C++ `

// C++ program for Minimum swap required // to convert binary tree to binary search tree

#include<bits/stdc++.h> using namespace std;

// Function to perform inorder traversal of the binary tree // and store it in vector v void inorder(vector& arr, vector& inorderArr, int index) {

int n = arr.size();

// If index is out of bounds, return
if (index >= n)
    return;

// Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1);

// Store current node value in vector
inorderArr.push_back(arr[index]);

// Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2);

}

// Function to calculate minimum swaps // to sort inorder traversal int minSwaps(vector& arr) { int n = arr.size(); vector inorderArr;

// Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0);

// Create an array of pairs to store value
  // and original index
vector<pair<int, int>> t(inorderArr.size());
int ans = 0;

// Store the value and its index
for (int i = 0; i < inorderArr.size(); i++)
    t[i] = {inorderArr[i], i};

// Sort the pair array based on values 
  // to get BST order
sort(t.begin(), t.end());

// Find minimum swaps by detecting cycles
for (int i = 0; i < t.size(); i++) {
  
    // If the element is already in the 
      // correct position, continue
    if (i == t[i].second)
        continue;
    
    // Otherwise, perform swaps until the element
      // is in the right place
    else {
      
        // Swap elements to correct positions
        swap(t[i].first, t[t[i].second].first);
        swap(t[i].second, t[t[i].second].second);
    }
    
    // Check if the element is still not
      // in the correct position
    if (i != t[i].second)
        --i;  
    
    // Increment swap count
    ans++;
}

return ans;

}

int main() {

vector<int> arr = { 5, 6, 7, 8, 9, 10, 11 };
cout << minSwaps(arr) << endl;

}

Java

// Java program for Minimum swap required // to convert binary tree to binary search tree import java.util.Arrays;

class GfG {

// Function to perform inorder traversal of the binary tree
// and store it in an array
static void inorder(int[] arr, int[] inorderArr, 
                    int index, int[] counter) {
    int n = arr.length;
    
    // Base case: if index is out of bounds, return
    if (index >= n)
        return;
    
    // Recursively visit left subtree
    inorder(arr, inorderArr, 2 * index + 1, counter);
    
    // Store current node value in the inorder array
    inorderArr[counter[0]] = arr[index];
    counter[0]++;
    
    // Recursively visit right subtree
    inorder(arr, inorderArr, 2 * index + 2, counter);
}

// Function to calculate minimum swaps 
// to sort inorder traversal
static int minSwaps(int[] arr) {
    int n = arr.length;
    int[] inorderArr = new int[n];
    int[] counter = new int[1];
    
    // Get the inorder traversal of the binary tree
    inorder(arr, inorderArr, 0, counter);
    
    // Create an array of pairs to store the value 
    // and its original index
    int[][] t = new int[n][2];
    int ans = 0;
    
    // Store the value and its original index
    for (int i = 0; i < n; i++) {
        t[i][0] = inorderArr[i];
        t[i][1] = i;
    }
    
    // Sort the array based on values to get BST order
    Arrays.sort(t, (a, b) -> Integer.compare(a[0], b[0]));
    
    // Find minimum swaps by detecting cycles
    boolean[] visited = new boolean[n];
    
    // Iterate through the array to find cycles
    for (int i = 0; i < n; i++) {
      
        // If the element is already visited or in
          // the correct place, continue
        if (visited[i] || t[i][1] == i)
            continue;
        
        // Start a cycle and find the number of
          // nodes in the cycle
        int cycleSize = 0;
        int j = i;
        
        while (!visited[j]) {
            visited[j] = true;
            j = t[j][1];
            cycleSize++;
        }
        
        // If there is a cycle, we need (cycleSize - 1)
          // swaps to sort the cycle
        if (cycleSize > 1) {
            ans += (cycleSize - 1);
        }
    }
    
    // Return the total number of swaps
    return ans;
}

public static void main(String[] args) {
    int[] arr = {5, 6, 7, 8, 9, 10, 11}; 
    System.out.println(minSwaps(arr));
}

}

` Python ``

Python program for Minimum swap required

to convert binary tree to binary search tree

Function to perform inorder traversal of the binary tree

and store it in an array

def inorder(arr, inorderArr, index):

# If index is out of bounds, return
n = len(arr)
if index >= n:
    return

# Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1)

# Store current node value in inorderArr
inorderArr.append(arr[index])

# Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2)

Function to calculate minimum swaps

to sort inorder traversal

def minSwaps(arr): inorderArr = []

# Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0)

# Create a list of pairs to store value and original index
t = [(inorderArr[i], i) for i in range(len(inorderArr))]
ans = 0

# Sort the list of pairs based on values
# to get BST order
t.sort()

# Initialize visited array
visited = [False] * len(t)

# Find minimum swaps by detecting cycles
for i in range(len(t)):

    # If already visited or already in the
    # correct place, skip
    if visited[i] or t[i][1] == i:
        continue

    # Start a cycle and find the number of 
    # nodes in the cycle
    cycleSize = 0
    j = i

    # Process all elements in the cycle
    while not visited[j]:
        visited[j] = True
        j = t[j][1]
        cycleSize += 1

    # If there is a cycle of size `cycle_size`, we 
    # need `cycle_size - 1` swaps
    if cycleSize > 1:
        ans += (cycleSize - 1)

# Return total number of swaps
return ans

if name == "main": arr = [5, 6, 7, 8, 9, 10, 11] print(minSwaps(arr))

C#

// C# program for Minimum swap required // to convert binary tree to binary search tree using System; using System.Linq;

class GfG {

// Function to perform inorder traversal of the binary tree
// and store it in an array
static void Inorder(int[] arr, int[] inorderArr, int index, ref int counter) {
    int n = arr.Length;

    // Base case: if index is out of bounds, return
    if (index >= n)
        return;

    // Recursively visit left subtree
    Inorder(arr, inorderArr, 2 * index + 1, ref counter);

    // Store current node value in inorderArr
    inorderArr[counter] = arr[index];
    counter++;

    // Recursively visit right subtree
    Inorder(arr, inorderArr, 2 * index + 2, ref counter);
}

// Function to calculate minimum
  // swaps to sort inorder traversal
static int MinSwaps(int[] arr) {
    int n = arr.Length;
    int[] inorderArr = new int[n];
    int counter = 0;

    // Get the inorder traversal of the binary tree
    Inorder(arr, inorderArr, 0, ref counter);

    // Create an array of pairs to store value 
      // and original index
    var t = new (int, int)[n];
    for (int i = 0; i < n; i++) {
        t[i] = (inorderArr[i], i);
    }

    // Sort the array based on values to get BST order
    Array.Sort(t, (a, b) => a.Item1.CompareTo(b.Item1));

    // Initialize visited array
    bool[] visited = new bool[n];
    int ans = 0;

    // Find minimum swaps by detecting cycles
    for (int i = 0; i < n; i++) {
      
        // If already visited or already in 
          // the correct place, skip
        if (visited[i] || t[i].Item2 == i)
            continue;

        // Start a cycle and find the number 
          // of nodes in the cycle
        int cycleSize = 0;
        int j = i;

        // Process all elements in the cycle
        while (!visited[j]) {
            visited[j] = true;
            j = t[j].Item2;
            cycleSize++;
        }

        // If there is a cycle of size `cycle_size`, we
         // need `cycle_size - 1` swaps
        if (cycleSize > 1)
        {
            ans += (cycleSize - 1);
        }
    }

    // Return total number of swaps
    return ans;
}

static void Main(string[] args) {
   
    int[] arr = { 5, 6, 7, 8, 9, 10, 11 };
    Console.WriteLine(MinSwaps(arr));
}

}

`` JavaScript `

// Javascript program for Minimum swap required // to convert binary tree to binary search tree

// Inorder traversal to get values in sorted order function inorder(arr, inorderArr, index) {

// If index is out of bounds, return
if (index >= arr.length)
    return;

// Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1);

// Store current node value in array
inorderArr.push(arr[index]);

// Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2);

}

// Function to calculate minimum swaps to sort inorder // traversal function minSwaps(arr) {

let inorderArr = [];

// Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0);

// Create an array of pairs to store value and original
// index
let t = inorderArr.map((val, i) => [val, i]);
let ans = 0;

// Sort the pair array based on values to get BST order
t.sort((a, b) => a[0] - b[0]);

// Find minimum swaps by detecting cycles
let visited = Array(arr.length)
                  .fill(false);

for (let i = 0; i < t.length; i++) {

    // If the element is already in the correct
    // position, continue
    if (visited[i] || t[i][1] === i)
        continue;

    // Otherwise, perform swaps until the element is in
    // the right place
    let cycleSize = 0;
    let j = i;

    while (!visited[j]) {
        visited[j] = true;
        j = t[j][1];
        cycleSize++;
    }

    // If there is a cycle, we need (cycleSize - 1)
    // swaps to sort the cycle
    if (cycleSize > 1) {
        ans += (cycleSize - 1);
    }
}

// Return total number of swaps
return ans;

}

let arr = [ 5, 6, 7, 8, 9, 10, 11 ]; console.log(minSwaps(arr));

`

**Time Complexity: O(n*logn) where n is the number of elements in array.
**Auxiliary Space: O(n) because it is using extra space for array

**Exercise: Can we extend this to normal binary tree, i.e., a binary tree represented using left and right pointers, and not necessarily complete?