numpy.atleast_1d() in Python (original) (raw)
Last Updated : 28 Nov, 2018
**numpy.atleast_1d()
**function is used when we want to Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.
Syntax : numpy.atleast_1d(*arrays)
Parameters :
arrays1, arrays2, … : [array_like] One or more input arrays.Return : [ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if necessary.
Code #1 : Working
import
numpy as geek
in_num
=
10
print
(
"Input number : "
, in_num)
out_arr
=
geek.atleast_1d(in_num)
print
(
"output 1d array from input number : "
, out_arr)
Output :
Input number : 10 output 1d array from input number : [10]
Code #2 : Working
import
numpy as geek
my_list
=
[[
2
,
6
,
10
],
`` [
8
,
12
,
16
]]
print
(
"Input list : "
, my_list)
out_arr
=
geek.atleast_1d(my_list)
print
(
"output array : "
, out_arr)
Output :
Input list : [[2, 6, 10], [8, 12, 16]] output array : [[ 2 6 10] [ 8 12 16]]
Code #3 : Working
import
numpy as geek
in_arr
=
geek.arange(
9
).reshape(
3
,
3
)
print
(
"Input array :\n "
, in_arr)
out_arr
=
geek.atleast_1d(in_arr)
print
(
"output array :\n "
, out_arr)
print
(in_arr
is
out_arr)
Output :
IInput array : [[0 1 2] [3 4 5] [6 7 8]] output array : [[0 1 2] [3 4 5] [6 7 8]] True'
Similar Reads
- numpy.atleast_2d() in Python numpy.atleast_2d() function is used when we want to Convert inputs to arrays with at least two dimension. Scalar and 1-dimensional inputs are converted to 2-dimensional arrays, whilst higher-dimensional inputs are preserved. Syntax : numpy.atleast_2d(*arrays) Parameters : arrays1, arrays2, ... : [ar 2 min read
- numpy.atleast_3d() in Python numpy.atleast_3d() function is used when we want to Convert inputs to arrays with at least three dimension. Scalar, 1 and 2 dimensional inputs are converted to 3-dimensional arrays, whilst higher-dimensional inputs are preserved. Input includes scalar, lists, lists of tuples, tuples, tuples of tuple 2 min read
- numpy.alen() in Python numpy.alen() function is used to return the length of the first dimension of the input array. Syntax : numpy.alen(arr) Parameters : arr : [array_like] Input array. Return : [int]Length of the first dimension of arr. Code #1 : # Python program explaining # alen() function import numpy as geek # input 1 min read
- numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : 3 min read
- numpy.any() in Python The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i 3 min read
- numpy.arange() in Python numpy.arange() function creates an array of evenly spaced values within a given interval. It is similar to Python's built-in range() function but returns a NumPy array instead of a list. Let's understand with a simple example: [GFGTABS] Python import numpy as np #create an array arr= np.arange(5 , 1 2 min read
- Numpy MaskedArray.atleast_1d() function | Python numpy.MaskedArray.atleast_1d() function is used to convert inputs to masked arrays with at least one dimension.Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Syntax : numpy.ma.atleast_1d(*arys) Parameters: arys:[ array_like] One or more input arr 2 min read
- numpy.find() in Python numpy.core.defchararray.find(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, optional] Range to search in. Returns : An integer array wi 1 min read
- Boolean Array in NumPy - Python The goal here is to work with Boolean arrays in NumPy, which contain only True or False values. Boolean arrays are commonly used for conditional operations, masking and filtering elements based on specific criteria. For example, given a NumPy array [1, 0, 1, 0, 1], we can create a Boolean array wher 3 min read
- numpy.floor() in Python The numpy.floor() function returns the largest integer less than or equal to each element in the input array. It effectively rounds numbers down to the nearest whole number. Let's understand with an example: [GFGTABS] Python import numpy as np a = [0.5, 1.5, 2.5, 3, 4.5, 10.1] res = np.floor(a) prin 1 min read