numpy.bincount() in Python (original) (raw)
Last Updated : 17 Nov, 2020
In an array of +ve integers, the numpy.bincount() method counts the occurrence of each element. Each bin value is the occurrence of its index. One can also set the bin size accordingly.
Syntax :
numpy.bincount(arr, weights = None, min_len = 0)
Parameters :
arr : [array_like, 1D]Input array, having positive numbers weights : [array_like, optional]same shape as that of arr min_len : Minimum number of bins we want in the output array
Return :
Output array with no. of occurrence of index value of bin in input - arr. Output array, by default is of the length max element of arr + 1. Here size of the output array would be max(input_arr)+1.
Code 1 : Working of bincount() in NumPy
Output :
Bincount output : [0 4 2 0 0 0 1] size of bin : 7
Bincount output : [0 1 3 0 1 5] size of bin : 6
Bincount output : [0 1 3 0 1 5 0 0 0 0] size of bin : 10
Code 2 : We can perform addition as per element with bincount() weight
import
numpy as geek
array2
=
[
10
,
11
,
4
,
6
,
2
,
1
,
9
]
array1
=
[
1
,
3
,
1
,
3
,
1
,
2
,
2
]
bin
=
geek.bincount(array1, array2)
print
(
"Summation element-wise : \n"
,
bin
)
Output :
Summation element-wise : [ 0. 16. 10. 17.]
References :
https://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html#numpy.bincount
.
Similar Reads
- numpy.count() in Python numpy.core.defchararray.count(arr, substring, start=0, end=None): Counts for the non-overlapping occurrence of sub-string in the specified range. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, optional] Range to search in. Returns : An 1 min read
- numpy.any() in Python The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i 3 min read
- numpy.iinfo() function – Python numpy.iinfo() function shows machine limits for integer types. Syntax : numpy.iinfo(dtype) Parameters : dtype : [integer type, dtype, or instance] The kind of integer data type to get information about. Return : Machine limits for integer types. Code #1 : # Python program explaining # numpy.iinfo() 1 min read
- numpy.bitwise_or() in Python numpy.bitwise_or()function is used to Compute the bit-wise OR of two array element-wise. This function computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_or(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K 2 min read
- numpy.floor() in Python The numpy.floor() function returns the largest integer less than or equal to each element in the input array. It effectively rounds numbers down to the nearest whole number. Let's understand with an example: [GFGTABS] Python import numpy as np a = [0.5, 1.5, 2.5, 3, 4.5, 10.1] res = np.floor(a) prin 1 min read
- numpy.binary_repr() in Python numpy.binary_repr(number, width=None) function is used to represent binary form of the input number as a string. For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the two’s complement of the number is returned, with respect to that width. In a two’s- 3 min read
- numpy.bitwise_and() in Python numpy.bitwise_and() function is used to Compute the bit-wise AND of two array element-wise. This function computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_and(arr1, arr2, /, out=None, *, where=True, casting='same_kind', ord 2 min read
- numpy.byte_bounds() function – Python numpy.byte_bounds() function returns pointers to the end-points of an array. Syntax : numpy.byte_bounds(arr) Parameters : arr : [ndarray] Input array. Return : [tuple of 2 integers] The first integer is the first byte of the array, the second integer is just past the last byte of the array. If arr i 1 min read
- numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : 3 min read
- numpy.nansum() in Python numpy.nansum()function is used when we want to compute the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. Syntax : numpy.nansum(arr, axis=None, dtype=None, out=None, keepdims='no value') Parameters : arr : [array_like] Array containing numbers whose sum is desired. If 3 min read