numpy.char.multiply() function in Python (original) (raw)
Last Updated : 29 Aug, 2020
The multiply() method of the char class in the NumPy module is used for element-wise string multiple concatenation.
numpy.char.multiply()
Syntax : numpy.char.multiply(a, i)
Parameters :
- a : array of str or unicode
- i : number of times to be repeated
Returns : Array of strings
Example 1 : Using the method on a single element string array.
Python3
import
numpy as np
arr1
=
np.array([
'Geeks'
])
print
(
"Original Array :"
)
print
(arr1)
i
=
3
arr2
=
np.char.multiply(arr1, i)
print
(
"\nNew array :"
)
print
(arr2)
Output :
Original Array : ['Geeks']
New array : ['GeeksGeeksGeeks']
Example 2 : Using the method on multiple elements string array.
Python3
import
numpy as np
arr1
=
np.array([
'Geeks'
,
'for'
,
'Geeks'
])
print
(
"Original Array :"
)
print
(arr1)
i
=
2
arr2
=
np.char.multiply(arr1, i)
print
(
"\nNew array :"
)
print
(arr2)
Output :
Original Array : ['Geeks' 'for' 'Geeks']
New array : ['GeeksGeeks' 'forfor' 'GeeksGeeks']
Similar Reads
- numpy.char.add() function in Python The add() method of the char class in the NumPy module is used for element-wise string concatenation for two arrays of str or unicode. numpy.char.add()Syntax : numpy.char.add(x1, x2)Parameters : x1 : first array to be concatenated (concatenated at the beginning)x2 : second array to be concatenated ( 2 min read
- numpy.defchararray.multiply() in Python numpy.core.defchararray.multiply(arr, n): Concatenates strings 'n' times element-wise. Parameters: arr : array-like or string. n : [array-like] no. of times we want to concatenate. Returns : Concatenated String 'n' times element-wise. Code #1: # Python Program illustrating # numpy.char.multiply() me 1 min read
- numpy.multiply() in Python The numpy.multiply() is a numpy function in Python which is used to find element-wise multiplication of two arrays or scalar (single value). It returns the product of two input array element by element. Syntax: numpy.multiply(arr1, arr2, out=None, where=True, casting='same_kind', order='K', dtype=No 3 min read
- How to Call Multiple Functions in Python In Python, calling multiple functions is a common practice, especially when building modular, organized and maintainable code. In this article, we’ll explore various ways we can call multiple functions in Python. The most straightforward way to call multiple functions is by executing them one after 3 min read
- chr() Function in Python chr() function returns a string representing a character whose Unicode code point is the integer specified. chr() Example: C/C++ Code num = 97 print("ASCII Value of 97 is: ", chr(num)) OutputASCII Value of 97 is: a Python chr() Function Syntaxchr(num) Parametersnum: an Unicode code integer 3 min read
- numpy.mintypecode() function – Python numpy.mintypecode() function return the character for the minimum-size type to which given types can be safely cast. Syntax : numpy.mintypecode(typechars, typeset = 'GDFgdf', default = 'd') Parameters : typechars : [list of str or array_like] If a list of strings, each string should represent a dtyp 1 min read
- numpy.pad() function in Python numpy.pad() function is used to pad the Numpy arrays. Sometimes there is a need to perform padding in Numpy arrays, then numPy.pad() function is used. The function returns the padded array of rank equal to the given array and the shape will increase according to pad_width. Syntax: numpy.pad(array, p 2 min read
- Python 3 - input() function In Python, we use the input() function to take input from the user. Whatever you enter as input, the input function converts it into a string. If you enter an integer value still input() function converts it into a string. Python input() Function SyntaxSyntax: input(prompt) Parameter: Prompt: (optio 3 min read
- Multiply All Numbers in the List in Python Our task is Multiplying all numbers in a list Using Python. This can be useful in calculations, data analysis, and whenever we need a cumulative product. In this article we are going to explore various method to do this. Using a loopWe can simply use a loop (for loop) to iterate over the list elemen 2 min read
- numpy.outer() function - Python numpy.outer() function compute the outer product of two vectors. Syntax : numpy.outer(a, b, out = None) Parameters : a : [array_like] First input vector. Input is flattened if not already 1-dimensional. b : [array_like] Second input vector. Input is flattened if not already 1-dimensional. out : [nda 1 min read