numpy.compress() in Python (original) (raw)

Last Updated : 08 Mar, 2024

The numpy.compress() function returns selected slices of an array along mentioned axis, that satisfies an axis.

Syntax: numpy.compress(condition, array, axis = None, out = None)

Parameters :

condition : [array_like]Condition on the basis of which user extract elements. Applying condition on input_array, if we print condition, it will return an arra filled with either True or False. Array elements are extracted from the Indices having True value. array : Input array. User apply conditions on input_array elements axis : [optional, int]Indicating which slice to select. By Default, work on flattened array[1-D] out : [optional, ndarray]Output_array with elements of input_array, that satisfies condition

Return :

Copy of array with elements of input_array, that satisfies condition and along given axis

import numpy as geek

array = geek.arange( 10 ).reshape( 5 , 2 )

print ( "Original array : \n" , array)

a = geek.compress([ 0 , 1 ], array, axis = 0 )

print ( "\nSliced array : \n" , a)

a = geek.compress([ False , True ], array, axis = 0 )

print ( "\nSliced array : \n" , a)

Output :

Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]]

Sliced array : [[2 3]]

Sliced array : [[2 3]]

Note :
This codes won’t run on online-ID. Please run them on your systems to explore the working.
.

Similar Reads

Introduction







Creating NumPy Array













NumPy Array Manipulation


















Matrix in NumPy


















Operations on NumPy Array




Reshaping NumPy Array















Indexing NumPy Array






Arithmetic operations on NumPyArray










Linear Algebra in NumPy Array