numpy.empty() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.empty(shape, dtype = float, order = ‘C’) : Return a new array of given shape and type, with random values.
Parameters :
-> shape : Number of rows -> order : C_contiguous or F_contiguous -> dtype : [optional, float(by Default)] Data type of returned array.
import
numpy as geek
b
=
geek.empty(
2
, dtype
=
int
)
print
(
"Matrix b : \n"
, b)
a
=
geek.empty([
2
,
2
], dtype
=
int
)
print
(
"\nMatrix a : \n"
, a)
c
=
geek.empty([
3
,
3
])
print
(
"\nMatrix c : \n"
, c)
Output :
Matrix b : [ 0 1079574528]
Matrix a : [[0 0] [0 0]]
Matrix a : [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
Note : empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster.
Also, these codes won’t run on online-ID. Please run them on your systems to explore the working
Similar Reads
- numpy.empty_like() in Python numpy.empty_like(a, dtype = None, order = 'K', subok = True) : Return a new array with the same shape and type as a given array. Parameters : shape : Number of rows order : C_contiguous or F_contiguous dtype : [optional, float(by Default)] Data type of returned array. subok : [bool, optional] to mak 1 min read
- numpy.any() in Python The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i 3 min read
- numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : 3 min read
- numpy.matlib.empty() function | Python numpy.matlib.empty() function return a new matrix of given shape and type, without initializing entries. Syntax : numpy.matlib.empty(shape, dtype = None, order = 'C') Parameters : shape : [int or tuple of int] Shape of the empty matrix. dtype : [data-type, optional] Desired output data-type. order : 1 min read
- numpy.isnan() in Python The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed with 2 min read
- Python | Numpy np.legzero() method np.legzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.legzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.legzero() method # import numpy and legzero import numpy as np from numpy.polynomial.legendre import legzer 1 min read
- Python | Numpy np.lagzero() method np.lagzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.lagzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.lagzero() method # import numpy and lagzero import numpy as np from numpy.polynomial.laguerre import lagzer 1 min read
- numpy.zeros() in Python numpy.zeros() function creates a new array of specified shapes and types, filled with zeros. It is beneficial when you need a placeholder array to initialize variables or store intermediate results. We can create 1D array using numpy.zeros(). Let's understand with the help of an example: [GFGTABS] P 2 min read
- numpy.negative() in Python numpy.negative() function is used when we want to compute the negative of array elements. It returns element-wise negative value of an array or negative value of a scalar. Syntax : numpy.negative(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, ext 2 min read
- numpy.flatnonzero() in Python numpy.flatnonzero()function is used to Compute indices that are non-zero in the flattened version of arr. Syntax : numpy.flatnonzero(arr) Parameters : arr : [array_like] Input array. Return : ndarray Output array, containing the indices of the elements of arr.ravel() that are non-zero. Code #1 : Wor 1 min read