numpy.exp2() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.exp2(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
This mathematical function helps user to calculate 2**x for all x being the array elements.
Parameters :
array : [array_like]Input array or object whose elements, we need to test.
out : [ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.
Return :
An array with 2**x(power of 2) for all x i.e. array elements
Code 1 : Working
import
numpy as np
in_array
=
[
1
,
3
,
5
,
4
]
print
(
"Input array : \n"
, in_array)
exp2_values
=
np.exp2(in_array)
print
(
"\n2**x values : \n"
, exp2_values)
Output :
Input array : [1, 3, 5, 4]
2**x values : [ 2. 8. 32. 16.]
Code 2 : Graphical representation
import
numpy as np
import
matplotlib.pyplot as plt
in_array
=
[
1
,
2
,
3
,
4
,
5
,
6
]
out_array
=
np.exp2(in_array)
print
(
"out_array : "
, out_array)
y
=
[
1
,
2
,
3
,
4
,
5
,
6
]
plt.plot(in_array, y, color
=
'blue'
, marker
=
"*"
)
plt.plot(out_array, y, color
=
'red'
, marker
=
"o"
)
plt.title(
"numpy.exp2()"
)
plt.xlabel(
"X"
)
plt.ylabel(
"Y"
)
plt.show()
Output :
out_array : [ 2. 4. 8. 16. 32. 64.]
References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp2.html
.
Similar Reads
- numpy.exp() in Python numpy.exp(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements in the input array. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray 4 min read
- numpy.expm1() in Python numpy.expm1(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements. Parameters : array : [array_like]Input array or object whose elements, 2 min read
- numpy.alen() in Python numpy.alen() function is used to return the length of the first dimension of the input array. Syntax : numpy.alen(arr) Parameters : arr : [array_like] Input array. Return : [int]Length of the first dimension of arr. Code #1 : # Python program explaining # alen() function import numpy as geek # input 1 min read
- numpy.hypot() in Python This mathematical function helps user to calculate hypotenuse for the right angled triangle, given its side and perpendicular. Result is equivalent to Equivalent to sqrt(x1**2 + x2**2), element-wise. Syntax : numpy.exp2(arr1, arr2[, out]) = ufunc 'hypot') : Parameters : arr1, arr2 : [array_like] Leg 2 min read
- numpy.add() in Python NumPy, the Python powerhouse for scientific computing, provides an array of tools to efficiently manipulate and analyze data. Among its key functionalities lies numpy.add() a potent function that performs element-wise addition on NumPy arrays. numpy.add() SyntaxSyntax : numpy.add(arr1, arr2, /, out= 4 min read
- numpy.ldexp() in Python In Python, numpy.ldexp(arr1, arr2[, out]) function returns arr1 * (2**arr2), element-wise. This is also called as inverse of numpy.frexp() function. Syntax: numpy.ldexp()Parameters: arr1: [array_like] Array of multipliers. arr2: [array_like, int] Array of twos exponents. out: [ndarray, optional] Out 1 min read
- NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read
- numpy.log() in Python The numpy.log() is a mathematical function that helps user to calculate Natural logarithm of x where x belongs to all the input array elements. Natural logarithm log is the inverse of the exp(), so that log(exp(x)) = x. The natural logarithm is log in base e. Syntax :numpy.log(x[, out] = ufunc 'log1 4 min read
- numpy.base_repr() in Python numpy.base_repr(number, base=2, padding=0) function is used to return a string representation of a number in the given base system. For example, decimal number 10 is represented as 1010 in binary whereas it is represented as 12 in octal. Syntax : numpy.base_repr(number, base=2, padding=0) Parameters 3 min read
- numpy.log2() in Python numpy.log2(arr, out = None, *, where = True, casting = 'same_kind', order = 'K', dtype = None, ufunc 'log1p') : This mathematical function helps user to calculate Base-2 logarithm of x where x belongs to all the input array elements. Parameters : array : [array_like]Input array or object. out : [nda 2 min read