numpy.expm1() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.expm1(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements.
Parameters :
array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
Return :
An array with exponential(all elements of input array) - 1.
Code 1 : Working
import
numpy as np
in_array
=
[
1
,
3
,
5
]
print
(
"Input array : \n"
, in_array)
exp_values
=
np.exp(in_array)
print
(
"\nExponential value of array element : "
`` "\n"
, exp_values)
expm1_values
=
np.expm1(in_array)
print
(
"\n(Exponential value of array element) - (1) "
`` ": \n"
, expm1_values)
Output :
Input array : [1, 3, 5]
Exponential value of array element : [ 2.71828183 20.08553692 148.4131591 ]
(Exponential value of array element) - (1) : [ 1.71828183 19.08553692 147.4131591 ]
Code 2 : Graphical representation
import
numpy as np
import
matplotlib.pyplot as plt
in_array
=
[
1
,
1.2
,
1.4
,
1.6
,
1.8
,
2
]
out_array
=
np.expm1(in_array)
print
(
"out_array : "
, out_array)
y
=
[
1
,
1.2
,
1.4
,
1.6
,
1.8
,
2
]
plt.plot(in_array, y, color
=
'blue'
, marker
=
"*"
)
plt.plot(out_array, y, color
=
'red'
, marker
=
"o"
)
plt.title(
"numpy.expm1()"
)
plt.xlabel(
"X"
)
plt.ylabel(
"Y"
)
plt.show()
Output :
out_array : [ 1.71828183 2.32011692 3.05519997 3.95303242 5.04964746 6.3890561 ]
References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expm1.html#numpy.expm1
.