numpy.full_like() in Python (original) (raw)
Last Updated : 09 Mar, 2022
The numpy.full_like() function return a new array with the same shape and type as a given array.
Syntax :
numpy.full_like(a, fill_value, dtype = None, order = 'K', subok = True)
Parameters :
shape : Number of rows
order : C_contiguous or F_contiguous
dtype : [optional, float(by Default )] Data type of returned array.
subok : [bool, optional] to make subclass of a or not
Returns :
ndarray
Python
import
numpy as geek
x
=
geek.arange(
10
, dtype
=
int
).reshape(
2
,
5
)
print
(
"x before full_like : \n"
, x)
print
(
"\nx after full_like : \n"
, geek.full_like(x,
10.0
))
y
=
geek.arange(
10
, dtype
=
float
).reshape(
2
,
5
)
print
(
"\n\ny before full_like : \n"
, x)
print
(
"\ny after full_like : \n"
, geek.full_like(y,
0.01
))
Output :
x before full_like : [[0 1 2 3 4] [5 6 7 8 9]]
x after full_like : [[10 10 10 10 10] [10 10 10 10 10]]
y before full_like : [[0 1 2 3 4] [5 6 7 8 9]]
y after full_like : [[ 0.01 0.01 0.01 0.01 0.01] [ 0.01 0.01 0.01 0.01 0.01]]
References :
https://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like
Note :
These codes won’t run on online IDE’s. So please, run them on your systems to explore the working.
Similar Reads
- numpy.empty_like() in Python numpy.empty_like(a, dtype = None, order = 'K', subok = True) : Return a new array with the same shape and type as a given array. Parameters : shape : Number of rows order : C_contiguous or F_contiguous dtype : [optional, float(by Default)] Data type of returned array. subok : [bool, optional] to mak 1 min read
- numpy.find() in Python numpy.core.defchararray.find(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, optional] Range to search in. Returns : An integer array wi 1 min read
- numpy.ones_like() in Python The numpy.one_like() function returns an array of given shape and type as a given array, with ones. Syntax: numpy.ones_like(array, dtype = None, order = 'K', subok = True) Parameters : array : array_like input subok : [optional, boolean]If true, then newly created array will be sub-class of array; o 2 min read
- numpy.index() in Python numpy.core.defchararray.index(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range But if substring is not found, it raises ValueError. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, option 1 min read
- numpy.zeros_like() in Python This numpy method returns an array of given shape and type as given array, with zeros. Syntax: numpy.zeros_like(array, dtype = None, order = 'K', subok = True) Parameters : array : array_like input subok : [optional, boolean]If true, then newly created array will be sub-class of array; otherwise, a 2 min read
- numpy.count() in Python numpy.core.defchararray.count(arr, substring, start=0, end=None): Counts for the non-overlapping occurrence of sub-string in the specified range. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, optional] Range to search in. Returns : An 1 min read
- numpy.mintypecode() function – Python numpy.mintypecode() function return the character for the minimum-size type to which given types can be safely cast. Syntax : numpy.mintypecode(typechars, typeset = 'GDFgdf', default = 'd') Parameters : typechars : [list of str or array_like] If a list of strings, each string should represent a dtyp 1 min read
- numpy.flatnonzero() in Python numpy.flatnonzero()function is used to Compute indices that are non-zero in the flattened version of arr. Syntax : numpy.flatnonzero(arr) Parameters : arr : [array_like] Input array. Return : ndarray Output array, containing the indices of the elements of arr.ravel() that are non-zero. Code #1 : Wor 1 min read
- numpy.dtype.kind() function – Python numpy.dtype.kind() function determine the character code by identifying the general kind of data. Syntax : numpy.dtype.kind(type) Parameters : type : [dtype] The input data-type. Return : Return the character code by identifying the general kind of data. Code #1 : # Python program explaining # numpy 1 min read
- Numpy str_len() function numpy.char.str_len(arr) function is used for doing string operations in numpy. It returns the length of every string element wise. Parameters: arr : array_like of str or unicode.Input array. Returns : [ndarray] Output Array of integer. Code #1 : # Python program explaining # numpy.char.str_len() met 1 min read