numpy.full_like() in Python (original) (raw)
Last Updated : 09 Mar, 2022
The numpy.full_like() function return a new array with the same shape and type as a given array.
Syntax :
numpy.full_like(a, fill_value, dtype = None, order = 'K', subok = True)
Parameters :
shape : Number of rows
order : C_contiguous or F_contiguous
dtype : [optional, float(by Default )] Data type of returned array.
subok : [bool, optional] to make subclass of a or not
Returns :
ndarray
Python `
Python Programming illustrating
numpy.full_like method
import numpy as geek
x = geek.arange(10, dtype = int).reshape(2, 5) print("x before full_like : \n", x)
using full_like
print("\nx after full_like : \n", geek.full_like(x, 10.0))
y = geek.arange(10, dtype = float).reshape(2, 5) print("\n\ny before full_like : \n", x)
using full_like
print("\ny after full_like : \n", geek.full_like(y, 0.01))
`
Output :
x before full_like : [[0 1 2 3 4] [5 6 7 8 9]]
x after full_like : [[10 10 10 10 10] [10 10 10 10 10]]
y before full_like : [[0 1 2 3 4] [5 6 7 8 9]]
y after full_like : [[ 0.01 0.01 0.01 0.01 0.01] [ 0.01 0.01 0.01 0.01 0.01]]
References :
https://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like
Note :
These codes won’t run on online IDE's. So please, run them on your systems to explore the working.