numpy.iinfo() function – Python (original) (raw)
Last Updated : 18 Jun, 2020
numpy.iinfo()
function shows machine limits for integer types.
Syntax : numpy.iinfo(dtype)
Parameters :
dtype : [integer type, dtype, or instance] The kind of integer data type to get information about.
Return : Machine limits for integer types.
Code #1 :
import
numpy as geek
gfg
=
geek.iinfo(geek.int16)
print
(gfg)
Output :
Machine parameters for int16
min = -32768 max = 32767
Code #2 :
import
numpy as geek
gfg
=
geek.iinfo(geek.int32)
print
(gfg)
Output :
Machine parameters for int32
min = -2147483648 max = 2147483647
Similar Reads
- numpy.info() function in Python In Numpy we can get all the information about the function, class, or module like what will the parameter and what will be the type of the return value with the help of numpy.info() function. This function returns the help information for a function, class, or module. Syntax: numpy.info(numpy.info(o 1 min read
- numpy.i0() function | Python numpy.i0() function is the modified Bessel function of the first kind, order 0. it's usually denoted by I0. Syntax : numpy.i0(x) Parameters : x : [array_like, dtype float or complex] Argument of the Bessel function. Return : [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function ev 1 min read
- numpy.imag() function - Python numpy.imag() function return the imaginary part of the complex argument. Syntax : numpy.imag(arr) Parameters : arr : [array_like] Input array. Return : [ndarray or scalar] The imaginary component of the complex argument. If val is real, the type of val is used for the output. If val has complex elem 1 min read
- numpy.interp() function - Python numpy.interp() function returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x. Syntax : numpy.interp(x, xp, fp, left = None, right = None, period = None) Parameters : x : [array_like] The x-coordinates at which to evaluate the 2 min read
- numpy.isinf() in Python The numpy.isinf() function tests element-wise whether it is +ve or -ve infinity or not return the result as a boolean array. Syntax: numpy.isinf(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array pl 2 min read
- numpy.mintypecode() function – Python numpy.mintypecode() function return the character for the minimum-size type to which given types can be safely cast. Syntax : numpy.mintypecode(typechars, typeset = 'GDFgdf', default = 'd') Parameters : typechars : [list of str or array_like] If a list of strings, each string should represent a dtyp 1 min read
- numpy.who function - Python numpy.who() function print the NumPy arrays in the given dictionary. Syntax : numpy.who(vardict = None) Parameters : vardict : [dict, optional] A dictionary possibly containing ndarrays. Return : Returns ‘None’. If there is no dictionary passed in or vardict is None then returns NumPy arrays in the 1 min read
- numpy.dtype.kind() function – Python numpy.dtype.kind() function determine the character code by identifying the general kind of data. Syntax : numpy.dtype.kind(type) Parameters : type : [dtype] The input data-type. Return : Return the character code by identifying the general kind of data. Code #1 : # Python program explaining # numpy 1 min read
- numpy.matrix.A() function - Python numpy.matrix.A() function return self as an ndarray object. Syntax : numpy.matrix.A() Parameters : None Return : [ndarray] Return self as an ndarray. Code #1 : # Python program explaining # numpy.matrix.A() function # importing numpy as geek import numpy as geek mat = geek.matrix(geek.arange(9).resh 1 min read
- Python | numpy.issctype() function numpy.issctype() function is used to determine whether the given object represents a scalar data-type.If the given object represents a scalar data-type it returns true, otherwise it returns false. Syntax : numpy.issctype(rep) Parameters : rep : any input. Return : [bool] Boolean result of check whet 1 min read