numpy.info() function in Python (original) (raw)
Last Updated : 25 Oct, 2020
In Numpy we can get all the information about the function, class, or module like what will the parameter and what will be the type of the return value with the help of numpy.info() function. This function returns the help information for a function, class, or module.
Syntax: numpy.info(numpy.info(object=None, maxwidth=76, output=<_io.TextIOWrapper name='’ mode=’w’ encoding=’utf-8′>, toplevel=’numpy’))
Parameters:
objectobject or str, optional: This is object or name for input to get information about.
maxwidthint, optional: For Width.
outputfile like object, optional: Object opening mode.
toplevelstr, optional: Start search at this level.
Return: All the information about add function in the numpy.
Example :
Python
import
numpy as np
print
(np.info(np.add))
Output :
Similar Reads
- numpy.iinfo() function – Python numpy.iinfo() function shows machine limits for integer types. Syntax : numpy.iinfo(dtype) Parameters : dtype : [integer type, dtype, or instance] The kind of integer data type to get information about. Return : Machine limits for integer types. Code #1 : # Python program explaining # numpy.iinfo() 1 min read
- numpy.i0() function | Python numpy.i0() function is the modified Bessel function of the first kind, order 0. it's usually denoted by I0. Syntax : numpy.i0(x) Parameters : x : [array_like, dtype float or complex] Argument of the Bessel function. Return : [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function ev 1 min read
- id() function in Python In Python, id() function is a built-in function that returns the unique identifier of an object. The identifier is an integer, which represents the memory address of the object. The id() function is commonly used to check if two variables or objects refer to the same memory location. Python id() Fun 3 min read
- numpy.dtype.kind() function – Python numpy.dtype.kind() function determine the character code by identifying the general kind of data. Syntax : numpy.dtype.kind(type) Parameters : type : [dtype] The input data-type. Return : Return the character code by identifying the general kind of data. Code #1 : # Python program explaining # numpy 1 min read
- numpy.fromfunction() function – Python numpy.fromfunction() function construct an array by executing a function over each coordinate and the resulting array, therefore, has a value fn(x, y, z) at coordinate (x, y, z). Syntax : numpy.fromfunction(function, shape, dtype) Parameters : function : [callable] The function is called with N para 2 min read
- numpy.who function - Python numpy.who() function print the NumPy arrays in the given dictionary. Syntax : numpy.who(vardict = None) Parameters : vardict : [dict, optional] A dictionary possibly containing ndarrays. Return : Returns ‘None’. If there is no dictionary passed in or vardict is None then returns NumPy arrays in the 1 min read
- Python input() Function Python input() function is used to take user input. By default, it returns the user input in form of a string. input() Function Syntax: input(prompt)prompt [optional]: any string value to display as input message Ex: input("What is your name? ") Returns: Return a string value as input by the user. 4 min read
- Numpy size() function | Python numpy.size() function in Python is used to count the number of elements in a NumPy array. You can use it to get the total count of all elements, or to count elements along a specific axis, such as rows or columns in a multidimensional array. This makes it useful when quickly trying to understand the 2 min read
- Python min() Function Python min() function returns the smallest value from a set of values or the smallest item in an iterable passed as its parameter. It's useful when you need to quickly determine the minimum value from a group of numbers or objects. For example: [GFGTABS] Python a = [23,25,65,21,98] print(min(a)) b = 4 min read
- Numpy ndarray.getfield() function | Python numpy.ndarray.getfield() function return a field of the given array as a certain type. Syntax : numpy.ndarray.getfield(dtype, offset=0) Parameters : dtype : [str or dtype] The dtype size of the view can not be larger than that of the array itself. offset : [int] Number of bytes to skip before beginn 1 min read