numpy.ipmt() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.ipmt(rate, nper, pv, fv, when = ‘end’)
: This financial function helps user to compute payment value as per the interest only. i.e. returns the interest part.
Parameters :
rate : [scalar or (M, )array] Rate of interest as decimal (not per cent) per period
nper : [scalar or (M, )array] total compounding periods
fv : [scalar or (M, )array] Future value
pv : [scalar or (M, )array] present value
when : at the beginning (when = {‘begin’, 1}) or the end (when = {‘end’, 0}) of each period.Default is {‘end’, 0}Return : Payment value ie. the interest part of it.
Equation being solved :
fv + pv*(1+rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper – 1) == 0
or when rate == 0
fv + pv + pmt * nper == 0
Code:
import
numpy as np
Solution
=
np.ipmt(
0.6
/
12
,
2
*
12
,
1
*
12
,
10000
)
print
(
"Solution - ipmt value : "
, Solution)
Output:
Solution - ipmt value : 801.4432933339593
Similar Reads
- Python | numpy.isnat() method With the help of numpy.isnat() method, we can get the boolean value as true if date defined in a np.datetime64() method is not a time by using numpy.isnat() method. Syntax : numpy.isnat() Return : Return the boolean value if time is not found. Example #1 : In this example we can see that by using nu 1 min read
- numpy.i0() function | Python numpy.i0() function is the modified Bessel function of the first kind, order 0. it's usually denoted by I0. Syntax : numpy.i0(x) Parameters : x : [array_like, dtype float or complex] Argument of the Bessel function. Return : [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function ev 1 min read
- numpy.identity() in Python numpy.identity() function is used to create an identity matrix which is used to make identity matrix. This is commonly used in linear algebra and numerical computations. It has the following properties: Diagonal elements are all 1s.Non-diagonal elements are all 0s.Syntax: numpy.identity(n, dtype=Non 1 min read
- Python NumPy Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python. Besides its obvious scientific uses, Numpy can also be used as an efficient 6 min read
- NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read
- numpy.iinfo() function – Python numpy.iinfo() function shows machine limits for integer types. Syntax : numpy.iinfo(dtype) Parameters : dtype : [integer type, dtype, or instance] The kind of integer data type to get information about. Return : Machine limits for integer types. Code #1 : # Python program explaining # numpy.iinfo() 1 min read
- numpy.info() function in Python In Numpy we can get all the information about the function, class, or module like what will the parameter and what will be the type of the return value with the help of numpy.info() function. This function returns the help information for a function, class, or module. Syntax: numpy.info(numpy.info(o 1 min read
- Python | numpy.lookfor() method With the help of numpy.lookfor() method, we can get the information about the module in the numpy by using numpy.lookfor() method. Syntax : numpy.lookfor(module_name) Return : Return the information about the module. Example #1 : In this example we can see that by using numpy.lookfor() method, we ar 1 min read
- numpy.who function - Python numpy.who() function print the NumPy arrays in the given dictionary. Syntax : numpy.who(vardict = None) Parameters : vardict : [dict, optional] A dictionary possibly containing ndarrays. Return : Returns ‘None’. If there is no dictionary passed in or vardict is None then returns NumPy arrays in the 1 min read
- numpy.fromstring() function – Python numpy.fromstring() function create a new one-dimensional array initialized from text data in a string. Syntax : numpy.fromstring(string, dtype = float, count = -1, sep = ' ') Parameters : string : [str] A string that contained the data. dtype : [data-type, optional] Data-type of the array. Default d 1 min read