numpy.ma.make_mask_none() function | Python (original) (raw)
Last Updated : 22 Apr, 2020
numpy.ma.make_mask_none()
function return a boolean mask of the given shape, filled with False. This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If a complex dtype is specified, the type of each field is converted to a boolean type.
Syntax : numpy.ma.make_mask_none(newshape, dtype = None)Parameters : newshape : [tuple] A tuple indicating the shape of the mask.dtype : [{None, dtype}, optional] By default, the dtype is None. Otherwise, use a new datatype with the same fields as dtype, converted to boolean types.Return : [ndarray] An ndarray of appropriate shape and dtype, filled with False.
Code #1 :
Python3 `
Python program explaining
numpy.ma.make_mask_none() function
importing numpy as geek
and numpy.ma module as ma
import numpy as geek import numpy.ma as ma
gfg = ma.make_mask_none(4)
print (gfg)
`
Output :
[False False False False]
Code #2 :
Python3 `
Python program explaining
numpy.ma.make_mask_none() function
importing numpy as geek
and numpy.ma module as ma
import numpy as geek import numpy.ma as ma
gfg = ma.make_mask_none(4, dtype = None)
print (gfg)
`
Output :
[False False False False]
Similar Reads
- numpy.ma.make_mask() function | Python numpy.ma.make_mask() function is used to create a boolean mask from an array. This function can accept any sequence that is convertible to integers, or nomask. It does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True. Return m as a boolean ma 2 min read
- numpy.ma.is_masked() function | Python numpy.ma.is_masked() function determine whether input has masked values & accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Syntax : numpy.ma.is_masked(arr) Parameters : arr : [array_like] Array to check for masked values. Return : 1 min read
- numpy.ma.is_mask() function | Python numpy.ma.is_mask() function return True if parameter m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. Syntax : numpy.ma.is_mask(m) Parameter : m : [array_l 1 min read
- numpy.ma.MaskedArray.nonzero() function - Python numpy.ma.MaskedArray.nonzero() function return the indices of unmasked elements that are not zero. This function returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension. Syntax : numpy.ma.MaskedArray.nonzero(self) Return : [tuple] Indices 1 min read
- numpy.ma.mask_or() function | Python numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is Fal 2 min read
- numpy.ma.masked_all() function | Python numpy.ma.masked_all() function return an empty masked array of the given shape and dtype, where all the data are masked. Syntax : numpy.ma.masked_all(shape, dtype) Parameter : shape : [tuple] Shape of the required MaskedArray. dtype : [dtype, optional] Data type of the output. Return : [MaskedArray] 1 min read
- numpy.ma.mask_rows() function | Python In this numpy.ma.mask_rows() function, mask rows of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 0. Syntax : numpy.ma.mask_rows(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. The result is a MaskedArray. axis 2 min read
- numpy.ma.mask_cols() function | Python In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis alo 1 min read
- Numpy MaskedArray.masked_less() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read
- numpy.ma.clump_masked() function | Python numpy.ma.clump_masked() function returns a list of slices corresponding to the masked clumps of a 1-D array. Syntax : numpy.ma.clump_masked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of masked elements 1 min read