numpy.ma.make_mask() function | Python (original) (raw)
Last Updated : 20 Jun, 2021
numpy.ma.make_mask() function is used to create a boolean mask from an array.
This function can accept any sequence that is convertible to integers, or nomask. It does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True. Return m as a boolean mask.
Syntax : numpy.ma.make_mask(m, copy = False, shrink = True, dtype = bool )
Parameters :
arr : [ array_like] Potential mask.
copy : [bool, optional] Whether to return a copy of m (True) or m itself (False).
shrink : [bool, optional] Whether to shrink m to nomask if all its values are False.
dtype : [dtype, optional] Data-type of the output mask. By default, the output mask has a dtype of MaskType (bool).
Return : [ndarray] A boolean mask derived from m.
Code #1 :
Python3
import
numpy as geek
import
numpy.ma as ma
m
=
[
1
,
1
,
0
,
1
]
gfg
=
ma.make_mask(m)
print
(gfg)
Output :
[ True True False True]
Code #2 :
Python3
import
numpy as geek
import
numpy.ma as ma
m
=
[
2
,
-
3
,
0
,
1
]
gfg
=
ma.make_mask(m)
print
(gfg)
Output :
[ True True False True]
Code #3 :
Python3
import
numpy as geek
import
numpy.ma as ma
m
=
[
True
,
True
,
True
,
False
]
gfg
=
ma.make_mask(m)
print
(gfg)
Output :
[ True True True False]
Similar Reads
- numpy.ma.make_mask_none() function | Python numpy.ma.make_mask_none() function return a boolean mask of the given shape, filled with False. This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If a complex dtype is specified, the type of each field is converted to a boolean type. Synta 1 min read
- numpy.ma.is_mask() function | Python numpy.ma.is_mask() function return True if parameter m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. Syntax : numpy.ma.is_mask(m) Parameter : m : [array_l 1 min read
- numpy.ma.mask_or() function | Python numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is Fal 2 min read
- numpy.ma.is_masked() function | Python numpy.ma.is_masked() function determine whether input has masked values & accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Syntax : numpy.ma.is_masked(arr) Parameters : arr : [array_like] Array to check for masked values. Return : 1 min read
- numpy.ma.mask_rows() function | Python In this numpy.ma.mask_rows() function, mask rows of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 0. Syntax : numpy.ma.mask_rows(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. The result is a MaskedArray. axis 2 min read
- numpy.ma.mask_cols() function | Python In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis alo 1 min read
- numpy.ma.masked_all() function | Python numpy.ma.masked_all() function return an empty masked array of the given shape and dtype, where all the data are masked. Syntax : numpy.ma.masked_all(shape, dtype) Parameter : shape : [tuple] Shape of the required MaskedArray. dtype : [dtype, optional] Data type of the output. Return : [MaskedArray] 1 min read
- numpy.ma.mask_rowcols() function | Python In this numpy.ma.mask_rowcols() function, mask rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter. If axis is None, rows and columns are masked. If axis is 0, only rows are masked. If axis is 1 or -1, only columns are masked. Synta 2 min read
- numpy.mask_indices() function | Python numpy.mask_indices() function return the indices to access (n, n) arrays, given a masking function. Syntax : numpy.mask_indices(n, mask_func, k = 0) Parameters : n : [int] The returned indices will be valid to access arrays of shape (n, n). mask_func : [callable] A function whose call signature is s 1 min read
- numpy.ma.clump_masked() function | Python numpy.ma.clump_masked() function returns a list of slices corresponding to the masked clumps of a 1-D array. Syntax : numpy.ma.clump_masked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of masked elements 1 min read