numpy.ma.masked_all() function | Python (original) (raw)
Last Updated : 05 May, 2020
numpy.ma.masked_all()
function return an empty masked array of the given shape and dtype, where all the data are masked.
Syntax : numpy.ma.masked_all(shape, dtype)
Parameter :
shape : [tuple] Shape of the required MaskedArray.
dtype : [dtype, optional] Data type of the output.Return : [MaskedArray] A masked array with all data masked.
Code #1 :
import
numpy as geek
import
numpy.ma as ma
gfg
=
ma.masked_all((
4
,
4
))
print
(gfg)
Output :
[[-- -- -- --] [-- -- -- --] [-- -- -- --] [-- -- -- --]]
Code #2 :
import
numpy as geek
import
numpy.ma as ma
gfg
=
ma.masked_all((
3
,
3
), dtype
=
geek.int32)
print
(gfg)
Output :
[[-- -- --] [-- -- --] [-- -- --]]
Similar Reads
- numpy.ma.masked_all_like() function | Python numpy.ma.masked_all_like() function return an empty masked array of the same shape and dtype as the array arr, where all the data are masked. Syntax : numpy.ma.masked_all_like(arr) Parameter : arr : [ndarray] An array describing the shape and dtype of the required MaskedArray. Return : [MaskedArray] 1 min read
- numpy.ma.clump_masked() function | Python numpy.ma.clump_masked() function returns a list of slices corresponding to the masked clumps of a 1-D array. Syntax : numpy.ma.clump_masked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of masked elements 1 min read
- numpy.ma.is_masked() function | Python numpy.ma.is_masked() function determine whether input has masked values & accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Syntax : numpy.ma.is_masked(arr) Parameters : arr : [array_like] Array to check for masked values. Return : 1 min read
- numpy.ma.mask_cols() function | Python In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis alo 1 min read
- Numpy MaskedArray.all() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays. Masked arrays are arr 3 min read
- numpy.ma.mask_or() function | Python numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is Fal 2 min read
- numpy.ma.is_mask() function | Python numpy.ma.is_mask() function return True if parameter m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. Syntax : numpy.ma.is_mask(m) Parameter : m : [array_l 1 min read
- numpy.ma.masked_values() function | Python numpy.ma.masked_values() function return a MaskedArray, masked where the data in array arr are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose. Syntax : numpy.ma.masked_values(arr, value, rtol = 1e-05, atol = 1e-08, c 2 min read
- numpy.ma.notmasked_edges() function | Python numpy.ma.notmasked_edges() function find the indices of the first and last unmasked values along an axis. Return None, if all values are masked. Otherwise, return a list of two tuples, corresponding to the indices of the first and last unmasked values respectively. Syntax : numpy.ma.notmasked_edges( 2 min read
- numpy.ma.mask_rows() function | Python In this numpy.ma.mask_rows() function, mask rows of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 0. Syntax : numpy.ma.mask_rows(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. The result is a MaskedArray. axis 2 min read