numpy.ma.masked_values() function | Python (original) (raw)

Last Updated : 05 May, 2020

numpy.ma.masked_values() function return a MaskedArray, masked where the data in array arr are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose.

Syntax : numpy.ma.masked_values(arr, value, rtol = 1e-05, atol = 1e-08, copy = True, shrink = True)

Parameter :
arr : [array_like] Array to mask.
value : [float] Masking value.
rtol, atol : [float, optional] Must be convertible to an array of booleans with the same shape as data. True indicates a masked data.
copy : [bool, optional] Whether to return a copy of arr.
shrink : [bool, optional] Whether to collapse a mask full of False to nomask.

Return : [MaskedArray] The result of masking arr where approximately equal to value.

Code #1 :

import numpy as geek

import numpy.ma as ma

arr = geek.array([ 1 , 1.5 , 2 , 1.5 , 3 ])

gfg = ma.masked_values(arr, 1.5 )

print (gfg)

Output :

[1.0 -- 2.0 -- 3.0]

Code #2 :

import numpy as geek

import numpy.ma as ma

arr = geek.array([ 1 , 2 , 3 , 4 , 5 , 6 ])

gfg = ma.masked_values(arr, 4 )

print (gfg)

Output :

[1 2 3 -- 5 6]

Similar Reads