numpy.ma.notmasked_contiguous function | Python (original) (raw)
Last Updated : 22 Apr, 2020
numpy.ma.notmasked_contiguous()
function find contiguous unmasked data in a masked array along the given axis.
Syntax : numpy.ma.notmasked_contiguous(arr, axis = None)
Parameters :
arr : [array_like] The input array.
axis : [int, optional] Axis along which to perform the operation. Default is None.Return : [list] A list of slices (start and end indexes) of unmasked indexes in the array. If the input is 2d and axis is specified, the result is a list of lists.
Code #1 :
import
numpy as geek
import
numpy.ma as ma
arr
=
geek.arange(
12
).reshape((
3
,
4
))
mask
=
geek.zeros_like(arr)
mask[
1
:, :
-
1
]
=
1
; mask[
0
,
1
]
=
1
; mask[
-
1
,
0
]
=
0
ma
=
geek.ma.array(arr, mask
=
mask)
gfg
=
geek.ma.notmasked_contiguous(ma)
print
(gfg)
Output :
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
Code #2 :
import
numpy as geek
import
numpy.ma as ma
arr
=
geek.arange(
12
).reshape((
3
,
4
))
mask
=
geek.zeros_like(arr)
mask[
1
:, :
-
1
]
=
1
; mask[
0
,
1
]
=
1
; mask[
-
1
,
0
]
=
0
ma
=
geek.ma.array(arr, mask
=
mask)
gfg
=
geek.ma.notmasked_contiguous(ma, axis
=
1
)
print
(gfg)
Output :
[[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]
Similar Reads
- numpy.ma.notmasked_edges() function | Python numpy.ma.notmasked_edges() function find the indices of the first and last unmasked values along an axis. Return None, if all values are masked. Otherwise, return a list of two tuples, corresponding to the indices of the first and last unmasked values respectively. Syntax : numpy.ma.notmasked_edges( 2 min read
- numpy.ma.mask_cols() function | Python In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis alo 1 min read
- numpy.ma.clump_masked() function | Python numpy.ma.clump_masked() function returns a list of slices corresponding to the masked clumps of a 1-D array. Syntax : numpy.ma.clump_masked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of masked elements 1 min read
- numpy.ma.MaskedArray.count() function - Python numpy.ma.MaskedArray.count() function count the non-masked elements of the array along the given axis. Syntax : numpy.ma.MaskedArray.count(self, axis=None, keepdims = no value) Parameters : axis : [None or int or tuple of ints, optional] Axis along which the count is performed. The default axis is N 2 min read
- numpy.ma.masked_all() function | Python numpy.ma.masked_all() function return an empty masked array of the given shape and dtype, where all the data are masked. Syntax : numpy.ma.masked_all(shape, dtype) Parameter : shape : [tuple] Shape of the required MaskedArray. dtype : [dtype, optional] Data type of the output. Return : [MaskedArray] 1 min read
- numpy.ma.is_masked() function | Python numpy.ma.is_masked() function determine whether input has masked values & accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Syntax : numpy.ma.is_masked(arr) Parameters : arr : [array_like] Array to check for masked values. Return : 1 min read
- numpy.ma.choose() function - Python numpy.ma.choose() function use an index array to construct a new array from a set of choices. Given an array of integers and a set of n choice arrays, this method will create a new array that merges each of the choice arrays. Where arr value in arr is i, the new array will have the value that choice 2 min read
- numpy.ma.mask_or() function | Python numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is Fal 2 min read
- numpy.ma.masked_all_like() function | Python numpy.ma.masked_all_like() function return an empty masked array of the same shape and dtype as the array arr, where all the data are masked. Syntax : numpy.ma.masked_all_like(arr) Parameter : arr : [ndarray] An array describing the shape and dtype of the required MaskedArray. Return : [MaskedArray] 1 min read
- numpy.ma.masked_values() function | Python numpy.ma.masked_values() function return a MaskedArray, masked where the data in array arr are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose. Syntax : numpy.ma.masked_values(arr, value, rtol = 1e-05, atol = 1e-08, c 2 min read