Numpy MaskedArray.allequal() function | Python (original) (raw)
Last Updated : 27 Sep, 2019
In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma
module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.
numpy.MaskedArray.allequal()
function return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.
Syntax :
numpy.ma.allequal(arr1, arr2, fill_value=True)
Parameters:
arr1, arr2 : [array_like] Input arrays to compare.
fill_value : [ bool, optional] Whether masked values in arr1 or arr2 are considered equal (True) or not (False).Return : [ bool]Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
Code #1 :
import
numpy as geek
import
numpy.ma as ma
in_arr1
=
geek.array([
1e8
,
1e
-
5
,
-
15.0
])
print
(
"1st Input array : "
, in_arr1)
mask_arr1
=
ma.masked_array(in_arr1, mask
=
[
0
,
0
,
1
])
print
(
"1st Masked array : "
, mask_arr1)
in_arr2
=
geek.array([
1e8
,
1e
-
5
,
15.0
])
print
(
"2nd Input array : "
, in_arr2)
mask_arr2
=
ma.masked_array(in_arr2, mask
=
[
0
,
0
,
1
])
print
(
"2nd Masked array : "
, mask_arr2)
out_arr
=
ma.allequal(mask_arr1, mask_arr2, fill_value
=
False
)
print
(
"Output array : "
, out_arr)
Output:
1st Input array : [ 1.0e+08 1.0e-05 -1.5e+01] 1st Masked array : [100000000.0 1e-05 --] 2nd Input array : [1.0e+08 1.0e-05 1.5e+01] 2nd Masked array : [100000000.0 1e-05 --] Output array : False
Code #2 :
import
numpy as geek
import
numpy.ma as ma
in_arr1
=
geek.array([
2e8
,
3e
-
5
,
-
45.0
])
print
(
"1st Input array : "
, in_arr1)
mask_arr1
=
ma.masked_array(in_arr1, mask
=
[
0
,
0
,
1
])
print
(
"1st Masked array : "
, mask_arr1)
in_arr2
=
geek.array([
2e8
,
3e
-
5
,
15.0
])
print
(
"2nd Input array : "
, in_arr2)
mask_arr2
=
ma.masked_array(in_arr2, mask
=
[
0
,
0
,
1
])
print
(
"2nd Masked array : "
, mask_arr2)
out_arr
=
ma.allequal(mask_arr1, mask_arr2, fill_value
=
True
)
print
(
"Output array : "
, out_arr)
Output:
1st Input array : [ 2.0e+08 3.0e-05 -4.5e+01] 1st Masked array : [200000000.0 3e-05 --] 2nd Input array : [2.0e+08 3.0e-05 1.5e+01] 2nd Masked array : [200000000.0 3e-05 --] Output array : True