Numpy MaskedArray asarray() method | Python (original) (raw)
Last Updated : 16 Nov, 2021
numpy.ma.asarray()
function is used when we want to convert input to a masked array of the given data-type.
No copy is performed if the input is already a ndarray. If arr is a subclass of MaskedArray, a base class MaskedArray is returned.
Syntax : numpy.ma.asarray(arr, dtype=None, order=None)
Parameters :
arr : [array_like] Input data, in any form that can be converted to a masked array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.
dtype : [data-type, optional] By default, the data-type is inferred from the input data.
order : Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to āCā.Return : [MaskedArray] Masked array interpretation of arr.
Code #1 :
import
numpy as geek
my_list
=
[
1
,
4
,
8
,
7
,
2
,
5
]
print
(
"Input list : "
, my_list)
out_arr
=
geek.ma.asarray(my_list)
print
(
"output array from input list : "
, out_arr)
Output :
Input list : [1, 4, 8, 7, 2, 5] output array from input list : [1 4 8 7 2 5]
Code #2 :
import
numpy as geek
my_tuple
=
([
1
,
4
,
8
], [
7
,
2
,
5
])
print
(
"Input tuple : "
, my_tuple)
out_arr
=
geek.ma.asarray(my_tuple)
print
(
"output array from input tuple : "
, out_arr)
Output :
Input tuple : ([1, 4, 8], [7, 2, 5]) output array from input tuple : [[1 4 8] [7 2 5]]