Numpy MaskedArray.atleast_1d() function | Python (original) (raw)
Last Updated : 13 Oct, 2019
numpy.MaskedArray.atleast_1d()
function is used to convert inputs to masked arrays with at least one dimension.Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.
Syntax :
numpy.ma.atleast_1d(*arys)
Parameters:
**arys:**[ array_like] One or more input arrays.Return : [ ndarray] An array, or list of arrays, each with
arr.ndim >= 1
Code #1 :
import
numpy as geek
import
numpy.ma as ma
in_arr1
=
geek.array([[
1
,
2
], [
3
,
-
1
], [
5
,
-
3
]])
print
(
"1st Input array : "
, in_arr1)
in_arr2
=
geek.array(
2
)
print
(
"2nd Input array : "
, in_arr2)
mask_arr1
=
ma.masked_array(in_arr1, mask
=
[[
1
,
0
], [
0
,
1
], [
0
,
0
]])
print
(
"1st Masked array : "
, mask_arr1)
mask_arr2
=
ma.masked_array(in_arr2, mask
=
0
)
print
(
"2nd Masked array : "
, mask_arr2)
out_arr
=
ma.atleast_1d(mask_arr1, mask_arr2)
print
(
"Output masked array : "
, out_arr)
Output:
1st Input array : [[ 1 2] [ 3 -1] [ 5 -3]] 2nd Input array : 2 1st Masked array : [[-- 2] [3 --] [5 -3]] 2nd Masked array : 2 Output masked array : [masked_array( data=[[--, 2], [3, --], [5, -3]], mask=[[ True, False], [False, True], [False, False]], fill_value=999999), masked_array(data=[2], mask=[False], fill_value=999999)]
Code #2 :
import
numpy as geek
import
numpy.ma as ma
in_arr
=
geek.array([[[
2e8
,
3e
-
5
]], [[
-
45.0
,
2e5
]]])
print
(
"Input array : "
, in_arr)
mask_arr
=
ma.masked_array(in_arr, mask
=
[[[
1
,
0
]], [[
0
,
0
]]])
print
(
"3D Masked array : "
, mask_arr)
out_arr
=
ma.atleast_1d(mask_arr)
print
(
"Output masked array : "
, out_arr)
Output:
Input array : [[[ 2.0e+08 3.0e-05]]
[[-4.5e+01 2.0e+05]]] 3D Masked array : [[[-- 3e-05]]
[[-45.0 200000.0]]] Output masked array : [[[-- 3e-05]]
[[-45.0 200000.0]]]
Similar Reads
- Numpy MaskedArray.atleast_2d() function | Python numpy.MaskedArray.atleast_2d() function is used to convert inputs to masked arrays with at least two dimension.Scalar and 1-dimensional arrays are converted to 2-dimensional arrays, whilst higher-dimensional inputs are preserved. Syntax : numpy.ma.atleast_2d(*arys) Parameters: arys:[ array_like] One 2 min read
- Numpy MaskedArray.atleast_3d() function | Python numpy.MaskedArray.atleast_3d() function is used to convert inputs to masked arrays with at least three dimension.Scalar, 1-dimensional and 2-dimensional arrays are converted to 3-dimensional arrays, whilst higher-dimensional inputs are preserved. Syntax : numpy.ma.atleast_3d(*arys) Parameters: arys: 3 min read
- Numpy MaskedArray.all() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays. Masked arrays are arr 3 min read
- Numpy MaskedArray.dot() function | Python numpy.MaskedArray.dot() function is used to calculate the dot product of two mask arrays. Syntax : numpy.ma.dot(arr1, arr2, strict=False) Parameters: arr1, arr2:[ ndarray] Inputs arrays. strict : [bool, optional] Whether masked data are propagated (True) or set to 0 (False) for the computation. Defa 3 min read
- Numpy MaskedArray.astype() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read
- Numpy MaskedArray.allequal() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read
- Numpy MaskedArray.flatten() function | Python numpy.MaskedArray.flatten() function is used to return a copy of the input masked array collapsed into one dimension. Syntax : numpy.ma.flatten(order='C') Parameters: order : [‘C’, ‘F’, ‘A’, ‘K’, optional] Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the C/Fortran o 2 min read
- Numpy MaskedArray.argsort() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read
- Numpy MaskedArray.average() function | Python numpy.MaskedArray.average() function is used to return the weighted average of array over the given axis. Syntax : numpy.ma.average(arr, axis=None, weights=None, returned=False) Parameters: arr :[ array_like] Input masked array whose data to be averaged. Masked entries are not taken into account in 3 min read
- Numpy MaskedArray.argmax() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read