Numpy MaskedArray.flatten() function | Python (original) (raw)
Last Updated : 03 Oct, 2019
numpy.MaskedArray.flatten()
function is used to return a copy of the input masked array collapsed into one dimension.
Syntax :
numpy.ma.flatten(order='C')
Parameters: order : [‘C’, ‘F’, ‘A’, ‘K’, optional] Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the C/Fortran ordering from a. The default is ‘C’.Return : [ ndarray] A copy of the input array, flattened to one dimension.
Code #1 :
Python3 `
Python program explaining
numpy.MaskedArray.flatten() method
importing numpy as geek
and numpy.ma module as ma
import numpy as geek import numpy.ma as ma
creating input array of 2 * 2
in_arr = geek.array([[10, 20], [-10, 40]]) print ("Input array : ", in_arr)
Now we are creating a masked array
by making one entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[ 1, 0], [ 0, 0]]) print ("Masked array : ", mask_arr)
applying MaskedArray.flatten methods to make
it a 1D flattened array
out_arr = mask_arr.flatten() print ("Output flattened masked array : ", out_arr)
`
Output:
Input array : [[ 10 20] [-10 40]] Masked array : [[-- 20] [-10 40]] Output flattened masked array : [-- 20 -10 40]
Code #2 :
Python3 `
Python program explaining
numpy.MaskedArray.flatten() method
importing numpy as geek
and numpy.ma module as ma
import numpy as geek import numpy.ma as ma
creating input array
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -4e-6, 2e5]]]) print ("Input array : ", in_arr)
Now we are creating a masked array
by making one entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]]) print ("Masked array : ", mask_arr)
applying MaskedArray.flatten methods to make
it a 1D masked array
out_arr = mask_arr.flatten(order ='F') print ("Output flattened masked array : ", out_arr)
`
Output:
Input array : [[[ 2.e+08 3.e-05]]
[[-4.e-06 2.e+05]]] Masked array : [[[-- 3e-05]]
[[-4e-06 200000.0]]] Output flattened masked array : [-- -4e-06 3e-05 200000.0]