Numpy MaskedArray.masked_greater_equal() function | Python (original) (raw)
Last Updated : 27 Sep, 2019
In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma
module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.
numpy.MaskedArray.masked_greater_equal()
function is used to mask an array where greater than or equal to a given value.This function is a shortcut to masked_where
, with condition = (arr >= value).
Syntax :
numpy.ma.masked_greater_equal(arr, value, copy=True)
Parameters:
arr : [ndarray] Input array which we want to mask.
value : [int] It is used to mask the array element which are >= value.
copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view.Return : [ MaskedArray] The resultant array after masking.
Code #1 :
import
numpy as geek
import
numpy.ma as ma
in_arr
=
geek.array([
1
,
2
,
3
,
-
1
,
2
])
print
(
"Input array : "
, in_arr)
mask_arr
=
ma.masked_greater_equal(in_arr,
2
)
print
(
"Masked array : "
, mask_arr)
Output:
Input array : [ 1 2 3 -1 2] Masked array : [1 -- -- -1 --]
Code #2 :
import
numpy as geek
import
numpy.ma as ma
in_arr
=
geek.array([
5e8
,
3e
-
5
,
-
45.0
,
4e4
,
5e2
])
print
(
"Input array : "
, in_arr)
mask_arr
=
ma.masked_greater_equal(in_arr,
5e2
)
print
(
"Masked array : "
, mask_arr)
Output:
Input array : [ 5.0e+08 3.0e-05 -4.5e+01 4.0e+04 5.0e+02] Masked array : [-- 3e-05 -45.0 -- --]