Numpy MaskedArray.masked_invalid() function | Python (original) (raw)
Last Updated : 27 Sep, 2019
In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma
module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.
numpy.MaskedArray.masked_invalid()
function is used to mask an array where invalid values occur (NaNs or infs).This function is a shortcut to masked_where
, with condition = ~(numpy.isfinite(arr))
.
Syntax :
numpy.ma.masked_invalid(arr, copy=True)
Parameters:
arr : [ndarray] Input array which we want to mask.
copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view.Return : [ MaskedArray] The resultant array after masking.
Code #1 :
import
numpy as geek
import
numpy.ma as ma
in_arr
=
geek.array([
1
,
2
, geek.nan,
-
1
, geek.inf])
print
(
"Input array : "
, in_arr)
mask_arr
=
ma.masked_invalid(in_arr)
print
(
"Masked array : "
, mask_arr)
Output:
Input array : [ 1. 2. nan -1. inf] Masked array : [1.0 2.0 -- -1.0 --]
Code #2 :
import
numpy as geek
import
numpy.ma as ma
in_arr
=
geek.array([
5e8
,
3e
-
5
, geek.nan,
4e4
,
5e2
])
print
(
"Input array : "
, in_arr)
mask_arr
=
ma.masked_invalid(in_arr)
print
(
"Masked array : "
, mask_arr)
Output:
Input array : [5.e+08 3.e-05 nan 4.e+04 5.e+02] Masked array : [500000000.0 3e-05 -- 40000.0 500.0]