Numpy MaskedArray.masked_less() function | Python (original) (raw)
Last Updated : 27 Sep, 2019
In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma
module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.numpy.MaskedArray.masked_less()
function is used to mask an array where less than a given value.This function is a shortcut to masked_where
, with condition = (arr < value).
Syntax :
numpy.ma.masked_less(arr, value, copy=True)
Parameters: arr : [ndarray] Input array which we want to mask.value : [int] It is used to mask the array element which are < value.copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view.Return : [ MaskedArray] The resultant array after masking.
Code #1 :
Python3 `
Python program explaining
numpy.MaskedArray.masked_less() method
importing numpy as geek
and numpy.ma module as ma
import numpy as geek import numpy.ma as ma
creating input array
in_arr = geek.array([1, 2, 3, -1, 2]) print ("Input array : ", in_arr)
applying MaskedArray.masked_less methods
to input array where value<2
mask_arr = ma.masked_less(in_arr, 2) print ("Masked array : ", mask_arr)
`
Output:
Input array : [ 1 2 3 -1 2] Masked array : [-- 2 3 -- 2]
Code #2 :
Python3 `
Python program explaining
numpy.MaskedArray.masked_less() method
importing numpy as geek
and numpy.ma module as ma
import numpy as geek import numpy.ma as ma
creating input array
in_arr = geek.array([5e8, 3e-5, -45.0, 4e4, 5e2]) print ("Input array : ", in_arr)
applying MaskedArray.masked_less methods
to input array where value<5e2
mask_arr = ma.masked_less(in_arr, 5e2) print ("Masked array : ", mask_arr)
`
Output:
Input array : [ 5.0e+08 3.0e-05 -4.5e+01 4.0e+04 5.0e+02] Masked array : [500000000.0 -- -- 40000.0 500.0]