numpy.nanargmax() in Python (original) (raw)
Last Updated : 19 Sep, 2023
The numpy.nanargmax() function returns indices of the max element of the array in a particular axis ignoring NaNs.
The results cannot be trusted if a slice contains only NaNs and Infs.
Syntax:
numpy.nanargmax(array, axis = None)
Parameters :
array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1
Return :
Array of indices into the array with same shape as array.shape with the dimension along axis removed.
Code 1 :
Python
Output :
INPUT ARRAY 1 : [nan, 4, 2, 3, 1]
Indices of max in array1 : 1
INPUT ARRAY 2 : [[ nan 4.] [ 1. 3.]]
Indices of max in array2 : 1
Indices at axis 1 of array2 : [1 1]
Code 2: Comparing working of argmax and nanargmax
Python
import
numpy as geek
array
=
( [[
8
,
13
,
5
,
0
],
`` [
16
, geek.nan,
5
,
3
],
`` [geek.nan,
7
,
15
,
15
],
`` [
3
,
11
,
4
,
12
]])
print
(
"INPUT ARRAY : \n"
, array)
print
(
"\nIndices of max using argmax : "
, geek.argmax(array, axis
=
0
))
print
(
"\nIndices of max using nanargmax : : "
, geek.nanargmax(array, axis
=
0
))
Output :
INPUT ARRAY : [[8, 13, 5, 0], [16, nan, 5, 3], [nan, 7, 15, 15], [3, 11, 4, 12]]
Indices of max using argmax : [2 1 2 2]
Indices of max using nanargmax : : [1 0 2 2]
Note :
These codes won’t run on online IDE’s. So please, run them on your systems to explore the working.