numpy.not_equal() in Python (original) (raw)
Last Updated : 03 Jun, 2024
The **numpy.not_equal() checks whether two element are unequal or not.
**Syntax :
numpy.not_equal(x1, x2[, out])
**Parameters :
**x1, x2 : [array_like]Input Array whose elements we want to check
**out : [ndarray, optional]Output array that returns True/False.
A placeholder the same shape as x1 to store the result.
**Return :
Boolean array
**Code 1 :
Python `
Python Program illustrating
numpy.not_equal() method
import numpy as geek
a = geek.not_equal([1., 2.], [1., 3.]) print("Not equal : \n", a, "\n")
b = geek.not_equal([1, 2], [[1, 3],[1, 4]]) print("Not equal : \n", b, "\n")
`
**Output :
Not equal :
[False True]
Not equal :
[[False True]
[False True]]
**Code 2 :
Python `
Python Program illustrating
numpy.not_equal() method
import numpy as geek
Here we will compare Complex values with int
a = geek.array([0 + 1j, 2]) b = geek.array([1,2])
d = geek.not_equal(a, b) print("Comparing complex with int using .not_equal() : ", d)
`
**Output :
Comparing complex with int using .not_equal() : [ True False]
**Code 3 :
Python `
Python Program illustrating
numpy.not_equal() method
import numpy as geek
Here we will compare Float with int values
a = geek.array([1.1, 1]) b = geek.array([1, 2])
d = geek.not_equal(a, b) print("\nComparing float with int using .not_equal() : ", d)
`
**Output :
Comparing float with int using .not_equal() : [ True True]
Similar Reads
- numpy.less_equal() in Python The numpy.less_equal() function checks whether x1 is <= x2 or not. Syntax : numpy.less_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 a 2 min read
- numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : 3 min read
- numpy.array_equal() in Python numpy.array_equal(arr1, arr2) : This logical function that checks if two arrays have the same shape and elements. Parameters : arr1 : [array_like]Input array or object whose elements, we need to test. arr2 : [array_like]Input array or object whose elements, we need to test. Return : True, if both ar 1 min read
- numpy.greater_equal() in Python The numpy.greater_equal() checks whether x1 >= x2 or not. Syntax : numpy.greater_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are sca 2 min read
- numpy.any() in Python The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i 3 min read
- numpy.fmin() in Python numpy.fmin() function is used to compute element-wise minimum of array elements. This function compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first 2 min read
- numpy.greater() in Python The numpy.greater() checks whether x1 is greater than x2 or not. Syntax : numpy.greater(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are scala 2 min read
- numpy.nonzero() in Python numpy.nonzero()function is used to Compute the indices of the elements that are non-zero. It returns a tuple of arrays, one for each dimension of arr, containing the indices of the non-zero elements in that dimension. The corresponding non-zero values in the array can be obtained with arr[nonzero(ar 2 min read
- numpy.isnan() in Python The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed with 2 min read
- numpy.isinf() in Python The numpy.isinf() function tests element-wise whether it is +ve or -ve infinity or not return the result as a boolean array. Syntax: numpy.isinf(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array pl 2 min read