numpy.place() in Python (original) (raw)
Last Updated : 08 Mar, 2024
The numpy.place() method makes changes in the array according the parameters – conditions and value(uses first N-values to put into array as per the mask being set by the user). It works opposite to numpy.extract().
Syntax:
numpy.place(array, mask, vals)
Parameters :
array : [ndarray] Input array, we need to make changes into mask : [array_like]Boolean that must have same size as that of the input array value : Values to put into the array. Based on the mask condition it adds only N-elements to the array. If in case values in val are smaller than the mask, same values get repeated.
Return :
Array with change elements i.e. new elements being put
Python
import
numpy as geek
array
=
geek.arange(
12
).reshape(
3
,
4
)
print
(
"Original array : \n"
, array)
a
=
geek.place(array, array >
5
, [
15
,
25
,
35
])
print
(
"\nPutting up elements to array: \n"
, array)
array1
=
geek.arange(
6
).reshape(
2
,
3
)
print
(
"\n\nOriginal array1 : \n"
, array)
a
=
geek.place(array1, array1>
2
, [
44
,
55
])
print
(
"\nPutting new elements to array1 : \n"
, array1)
Output :
Original array : [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
Putting up elements to array: [[ 0 1 2 3] [ 4 5 15 25] [35 15 25 35]]
Original array1 : [[ 0 1 2 3] [ 4 5 15 25] [35 15 25 35]]
Putting new elements to array1 : [[ 0 1 2] [44 55 44]]
Note :
These codes won’t run on online IDE’s. So please, run them on your systems to explore the working.