numpy.poly() in Python (original) (raw)
Last Updated : 04 Dec, 2020
The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial.
**Syntax :**numpy.poly(seq)
Parameters :
Seq : sequence of roots of the polynomial roots, or a matrix of roots.Return: 1D array having coefficients of the polynomial from the highest degree to the lowest one.
c[0] * x**(N) + c[1] * x**(N-1) + … + c[N-1] * x + c[N] where c[0] always equals 1.
import
numpy as np
seq_1
=
(
2
,
1
,
0
)
a
=
np.poly(seq_1)
print
(
"Coefficients of the polynomial: "
, a)
p1
=
np.poly1d(a)
print
(
"\nAbove polynomial = \n"
, p1)
Output :
Coefficients of the polynomial: [ 1. -3. 2. 0.]
Above polynomial = 3 2 1 x - 3 x + 2 x
Code #2:
import
numpy as np
seq_2
=
(
2
,
1
,
0
,
2
,
4
,
2
)
b
=
np.poly(seq_2)
print
(
"Coefficients of the polynomial: "
, b)
p2
=
np.poly1d(b)
print
(
"\nAbove polynomial = \n"
, p2)
Output :
Coefficients of the polynomial: [ 1. -11. 46. -92. 88. -32. 0.]
Above polynomial = 6 5 4 3 2 1 x - 11 x + 46 x - 92 x + 88 x - 32 x
Similar Reads
- numpy.poly1d() in Python The numpy.poly1d() function helps to define a polynomial function. It makes it easy to apply "natural operations" on polynomials. Syntax: numpy.poly1d(arr, root, var) Parameters : arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) i 3 min read
- numpy.polyval() in Python numpy.polyval(p, x) method evaluates a polynomial at specific values. If 'N' is the length of polynomial 'p', then this function returns the value Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True th 2 min read
- numpy.polydiv() in Python The numpy.polydiv() method evaluates the division of two polynomials and returns the quotient and remainder of the polynomial division. Syntax : numpy.polydiv(p1, p2) Parameters : p1 : [array_like or poly1D]Coefficients of dividend polynomial. p2 : [array_like or poly1D]Coefficients of divisor polyn 1 min read
- numpy.polymul() in Python The numpy.polymul() method evaluates the product of two polynomials and returns the polynomial resulting from the multiplication of two input polynomials 'p1' and 'p2'. Syntax : numpy.polymul(p1, p2) Parameters : p1 : [array_like or poly1D]Input polynomial 1. p2 : [array_like or poly1D]Input polynom 1 min read
- numpy.polyint() in Python numpy.polyint(p, m) : Evaluates the anti - derivative of a polynomial with the specified order. m antiderivative 'P' of polynomial 'p' satisfies Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then 2 min read
- numpy.polyder() in Python The numpy.polyder() method evaluates the derivative of a polynomial with specified order. Syntax :numpy.polyder(p, m) Parameters : p : [array_like or poly1D]the polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the ro 2 min read
- numpy.polyadd() in Python numpy.polyadd() : This function helps to find the sum of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 p2 : Input polynomial 2 Return : Sum of pol 1 min read
- numpy.polysub() in Python numpy.polysub() :This function helps to find the difference of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 : 1x + 2. p2 : Input polynomial 2 : 9 1 min read
- Numpy.prod() in Python numpy.prod() returns the product of array elements over a given axis. Syntax: numpy.prod(a, axis=None, dtype=None, out=None, keepdims=) Parameters a : array_like Its the input data. axis : None or int or tuple of ints, its optional It is theAxis or axes along which a product is performed. The defaul 3 min read
- numpy.ptp() in Python numpy.ptp()function plays an important role in statistics by finding out Range of given numbers. Range = max value - min value. Syntax : ndarray.ptp(arr, axis=None, out=None) Parameters : arr :input array. axis :axis along which we want the range value. Otherwise, it will consider arr to be flattene 3 min read