numpy.polymul() in Python (original) (raw)
Last Updated : 04 Dec, 2020
The numpy.polymul() method evaluates the product of two polynomials and returns the polynomial resulting from the multiplication of two input polynomials ‘p1’ and ‘p2’.
Syntax : numpy.polymul(p1, p2)
Parameters :
p1 : [array_like or poly1D]Input polynomial 1.
p2 : [array_like or poly1D]Input polynomial 2.Return: Polynomial resulting from multiplication of the inputs.
If either input is poly1D
object, then the output is also a poly1D object otherwise, 1D array of polynomial coefficients in decreasing order of degree.
Code : Python code explaining polymul()
import
numpy as np
import
pandas as pd
p1
=
np.poly1d([
1
,
2
])
p2
=
np.poly1d([
4
,
9
,
5
,
4
])
print
(
"P1 : "
, p1)
print
(
"\n p2 : \n"
, p2)
mul
=
np.polymul(p2, p1)
print
(
"\n\npoly1D object : "
)
print
(
"Multiplication Result : \n"
, mul)
x
=
np.array([
1
,
2
])
y
=
np.array([
4
,
9
,
5
,
4
])
mul
=
np.polymul(y, x)
print
(
"\n1D array : "
)
print
(
"Multiplication Result : "
, mul)
Similar Reads
- numpy.poly() in Python The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial. Syntax :numpy.poly(seq) Parameters : Seq : sequence of roots of the polynomial roots, or a matrix of roots. Return: 1D array having coefficients of the polynomial from the highest degree t 2 min read
- numpy.polyval() in Python numpy.polyval(p, x) method evaluates a polynomial at specific values. If 'N' is the length of polynomial 'p', then this function returns the value Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True th 2 min read
- numpy.polysub() in Python numpy.polysub() :This function helps to find the difference of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 : 1x + 2. p2 : Input polynomial 2 : 9 1 min read
- numpy.poly1d() in Python The numpy.poly1d() function helps to define a polynomial function. It makes it easy to apply "natural operations" on polynomials. Syntax: numpy.poly1d(arr, root, var) Parameters : arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) i 3 min read
- numpy.polydiv() in Python The numpy.polydiv() method evaluates the division of two polynomials and returns the quotient and remainder of the polynomial division. Syntax : numpy.polydiv(p1, p2) Parameters : p1 : [array_like or poly1D]Coefficients of dividend polynomial. p2 : [array_like or poly1D]Coefficients of divisor polyn 1 min read
- numpy.polyint() in Python numpy.polyint(p, m) : Evaluates the anti - derivative of a polynomial with the specified order. m antiderivative 'P' of polynomial 'p' satisfies Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then 2 min read
- numpy.polyadd() in Python numpy.polyadd() : This function helps to find the sum of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 p2 : Input polynomial 2 Return : Sum of pol 1 min read
- numpy.polyder() in Python The numpy.polyder() method evaluates the derivative of a polynomial with specified order. Syntax :numpy.polyder(p, m) Parameters : p : [array_like or poly1D]the polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the ro 2 min read
- Numpy.prod() in Python numpy.prod() returns the product of array elements over a given axis. Syntax: numpy.prod(a, axis=None, dtype=None, out=None, keepdims=) Parameters a : array_like Its the input data. axis : None or int or tuple of ints, its optional It is theAxis or axes along which a product is performed. The defaul 3 min read
- numpy.power() in Python numpy.power(arr1, arr2, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : Array element from first array is raised to the power of element from second element(all happens element-wise). Both arr1 and arr2 must have same shape and each element in arr1 must be raised to cor 3 min read