numpy.polysub() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.polysub() :This function helps to find the difference of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree.
Parameters : p1 : Input polynomial 1 : 1x + 2. p2 : Input polynomial 2 : 9x2 + 5x + 4
Return:
Difference of polynomials : (0-9)x2 + (1-5)x + (2-4)
import
numpy as np
p1
=
np.poly1d([
1
,
2
])
p2
=
np.poly1d([
9
,
5
,
4
])
print
(
"P1 : "
, p1)
print
(
"\nP2 : \n"
, p2)
a
=
np.polysub(p1, p2)
print
(
"\nP1 - P2 : \n"
, a)
Output:
P1 :
1 x + 2
P2 : 2 9 x + 5 x + 4
P1 - P2 : 2 -9 x - 4 x - 2
Similar Reads
- numpy.poly() in Python The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial. Syntax :numpy.poly(seq) Parameters : Seq : sequence of roots of the polynomial roots, or a matrix of roots. Return: 1D array having coefficients of the polynomial from the highest degree t 2 min read
- numpy.polymul() in Python The numpy.polymul() method evaluates the product of two polynomials and returns the polynomial resulting from the multiplication of two input polynomials 'p1' and 'p2'. Syntax : numpy.polymul(p1, p2) Parameters : p1 : [array_like or poly1D]Input polynomial 1. p2 : [array_like or poly1D]Input polynom 1 min read
- numpy.poly1d() in Python The numpy.poly1d() function helps to define a polynomial function. It makes it easy to apply "natural operations" on polynomials. Syntax: numpy.poly1d(arr, root, var) Parameters : arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) i 3 min read
- numpy.polyval() in Python numpy.polyval(p, x) method evaluates a polynomial at specific values. If 'N' is the length of polynomial 'p', then this function returns the value Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True th 2 min read
- numpy.polydiv() in Python The numpy.polydiv() method evaluates the division of two polynomials and returns the quotient and remainder of the polynomial division. Syntax : numpy.polydiv(p1, p2) Parameters : p1 : [array_like or poly1D]Coefficients of dividend polynomial. p2 : [array_like or poly1D]Coefficients of divisor polyn 1 min read
- numpy.polyint() in Python numpy.polyint(p, m) : Evaluates the anti - derivative of a polynomial with the specified order. m antiderivative 'P' of polynomial 'p' satisfies Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then 2 min read
- numpy.polyder() in Python The numpy.polyder() method evaluates the derivative of a polynomial with specified order. Syntax :numpy.polyder(p, m) Parameters : p : [array_like or poly1D]the polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the ro 2 min read
- numpy.polyadd() in Python numpy.polyadd() : This function helps to find the sum of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 p2 : Input polynomial 2 Return : Sum of pol 1 min read
- numpy.ones() in Python The numpy.ones() function returns a new array of given shape and type, with ones. Syntax: numpy.ones(shape, dtype = None, order = 'C') Parameters : shape : integer or sequence of integers order : C_contiguous or F_contiguous C-contiguous order in memory(last index varies the fastest) C order means t 2 min read
- numpy.packbits() in Python numpy.packbits() is another function for doing binary operations in numpy.It is used to packs the elements of a binary-valued array into bits in a uint8 array.The result is padded to full bytes by inserting zero bits at the end. Syntax : numpy.packbits(arr, axis=None) Parameters : arr : [array_like] 2 min read