numpy.pv() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.fv(rate, nper, pmt, fv, when = ‘end’) : This financial function helps user to compute future values.
Parameters :
rate : [array_like] Rate of interest as decimal (not per cent) per period
nper : [array_like] total compounding periods
pmt : [array_like] fixed payment
fv : [array_like, optional] future value. Default = 0.0
when : at the beginning (when = {‘begin’, 1}) or the end (when = {‘end’, 0}) of each period. Default is {‘end’, 0}
Return :
present value as per given parameters.
Equation being solved :
fv + pv*(1 + rate)nper + pmt(1 + rate*when)/rate((1 + rate)**nper - 1) = 0
or when rate == 0
fv + pv + pmt * nper = 0
Code 1 : Working
import
numpy as np
Solution
=
np.pv(
0.05
/
12
,
10
*
12
,
-
100
,
15692.93
)
print
(
"present value (fv) : "
, Solution)
Output :
present value (fv) : -100.000671316
Reference :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.pv.html
Similar Reads
- numpy.pmt() in Python numpy.pmt(rate, nper, pv, fv, when = ‘end’): This financial function helps user to compute payment value as per the principal and interest. Parameters : rate : [scalar or (M, )array] Rate of interest as decimal (not per cent) per period nper : [scalar or (M, )array] total compounding periods fv : [s 1 min read
- numpy.ptp() in Python numpy.ptp()function plays an important role in statistics by finding out Range of given numbers. Range = max value - min value. Syntax : ndarray.ptp(arr, axis=None, out=None) Parameters : arr :input array. axis :axis along which we want the range value. Otherwise, it will consider arr to be flattene 3 min read
- numpy.ppmt() in Python numpy.ppmt(rate, nper, pv, fv, when = ‘end’) : This financial function helps user to compute payment value as per the principal value only. Parameters : rate : [scalar or (M, )array] Rate of interest as decimal (not per cent) per period nper : [scalar or (M, )array] total compounding periods fv : [s 2 min read
- Numpy.prod() in Python numpy.prod() returns the product of array elements over a given axis. Syntax: numpy.prod(a, axis=None, dtype=None, out=None, keepdims=) Parameters a : array_like Its the input data. axis : None or int or tuple of ints, its optional It is theAxis or axes along which a product is performed. The defaul 3 min read
- numpy.polyval() in Python numpy.polyval(p, x) method evaluates a polynomial at specific values. If 'N' is the length of polynomial 'p', then this function returns the value Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True th 2 min read
- numpy.polydiv() in Python The numpy.polydiv() method evaluates the division of two polynomials and returns the quotient and remainder of the polynomial division. Syntax : numpy.polydiv(p1, p2) Parameters : p1 : [array_like or poly1D]Coefficients of dividend polynomial. p2 : [array_like or poly1D]Coefficients of divisor polyn 1 min read
- numpy.poly1d() in Python The numpy.poly1d() function helps to define a polynomial function. It makes it easy to apply "natural operations" on polynomials. Syntax: numpy.poly1d(arr, root, var) Parameters : arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) i 3 min read
- numpy.fv() in Python numpy.fv(rate, nper, pmt, pv, when = 'end') : This financial function helps user to compute future values. Parameters : rate : [scalar or (M, )array] Rate of interest as decimal (not per cent) per period nper : [scalar or (M, )array] total compounding periods pmt : [scalar or (M, )array] fixed payme 1 min read
- numpy.polymul() in Python The numpy.polymul() method evaluates the product of two polynomials and returns the polynomial resulting from the multiplication of two input polynomials 'p1' and 'p2'. Syntax : numpy.polymul(p1, p2) Parameters : p1 : [array_like or poly1D]Input polynomial 1. p2 : [array_like or poly1D]Input polynom 1 min read
- numpy.polyder() in Python The numpy.polyder() method evaluates the derivative of a polynomial with specified order. Syntax :numpy.polyder(p, m) Parameters : p : [array_like or poly1D]the polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the ro 2 min read