numpy.signbit() in Python (original) (raw)
Last Updated : 29 Nov, 2018
numpy.signbit(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None)
: This mathematical function helps user to element – wise check whether the signbit is set or not.
Parameters :
array : [array_like]Input array or object whose elements, we need to check.
out : [ndarray, optional]Output array with same dimensions as Input array, placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.Return : True, if sign-bit is set; else False.
Code :
import
numpy as np
arr
=
[
1
,
-
23
,
+
34
,
11
]
print
(
"arr : "
, arr)
print
(
"\nCheck for signbit : "
, np.signbit(arr))
out_arr
=
np.arange(
4
)
print
(
"\nout_arr : "
, out_arr)
np.signbit(arr, out
=
out_arr)
print
(
"\nplacing signbit check values to out_arr : "
, out_arr)
Output :
arr : [1, -23, 34, 11]
Check for signbit : [False True False False]
out_arr : [0 1 2 3]
placing signbit check values to out_arr : [0 1 0 0]
Similar Reads
- numpy.sign() in Python numpy.sign(array [, out]) function is used to indicate the sign of a number element-wise. For integer inputs, if array value is greater than 0 it returns 1, if array value is less than 0 it returns -1, and if array value 0 it returns 0. Syntax: numpy.sign() Parameters : array : [array_like] Input va 2 min read
- numpy.unpackbits() in Python numpy.unpackbits() is another function for doing binary operations in numpy. It is used to unpacks elements of a uint8 array into a binary-valued output array. Syntax : numpy.unpackbits(arr, axis=None) Parameters : arr : [array_like ndarray] An uint8 type array whose elements should be unpacked. axi 2 min read
- numpy.right_shift() in Python numpy.right_shift() function is used to Shift the bits of an integer to the right. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing arr1 by 2**arr2. For example, if the number is 20 and we want to 2-bit right shift then after right shift 2- 2 min read
- numpy.left_shift() in Python numpy.left_shift() function is used to Shift the bits of an integer to the left. The bits are shifted to the left by appending arr2 0s(zeroes) at the right of arr1. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying arr1 by 2**arr2. For exam 2 min read
- numpy.fabs() in Python numpy.fabs() function is used to compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in arr. It always return absolute values in floats. Syntax : numpy.fabs(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, u 2 min read
- numpy.isnan() in Python The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed with 2 min read
- Python | Numpy matrix.tobytes() With the help of Numpy matrix.tobytes() method, we can find the byte code for the matrix by using the matrix.tobytes() method. Syntax : matrix.tobytes() Return : Return byte code for matrix Example #1 : In this example we can see that by using matrix.tobytes() method we are able to find the byte cod 1 min read
- numpy.base_repr() in Python numpy.base_repr(number, base=2, padding=0) function is used to return a string representation of a number in the given base system. For example, decimal number 10 is represented as 1010 in binary whereas it is represented as 12 in octal. Syntax : numpy.base_repr(number, base=2, padding=0) Parameters 3 min read
- numpy.who function - Python numpy.who() function print the NumPy arrays in the given dictionary. Syntax : numpy.who(vardict = None) Parameters : vardict : [dict, optional] A dictionary possibly containing ndarrays. Return : Returns ‘None’. If there is no dictionary passed in or vardict is None then returns NumPy arrays in the 1 min read
- numpy.binary_repr() in Python numpy.binary_repr(number, width=None) function is used to represent binary form of the input number as a string. For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the two’s complement of the number is returned, with respect to that width. In a two’s- 3 min read