numpy.sqrt() in Python (original) (raw)

Last Updated : 11 Apr, 2025

**numpy.sqrt() in Python is a function from the NumPy library used to compute the square root of each element in an array or a single number. It returns a new array of the same shape with the square roots of the input values. The function handles both positive and negative numbers, returning **NaN for negative inputs when working with real numbers.

**Example:

Python `

import numpy as np a = np.array([1, 4, 9, 16, 25]) b = np.sqrt(a) print(b)

`

**Syntax

numpy.sqrt()

**Parameters:

**Return Type: [ndarray] Returns the square root of the number in an array.

Examples of numpy.sqrt()

Example 1: Square Root of Positive Integers

This example demonstrates how to compute the square root of an array of positive integers using numpy.sqrt().

Python `

import numpy as geek a = geek.sqrt([1, 4, 9, 16]) b = geek.sqrt([6, 10, 18])

print(a) print(b)

`

Output

[1. 2. 3. 4.] [2.44948974 3.16227766 4.24264069]

Example 2: Square Root of Complex Numbers

This example shows how to compute the square root of complex numbers using **numpy.sqrt().

Python `

import numpy as geek a = geek.sqrt([4, -1, -5 + 9J]) print(a)

`

Output

[2. +0.j 0. +1.j 1.62721083+2.76546833j]

Example 3: Square Root of Negative Real Numbers

This example illustrates how numpy.sqrt() handles negative real numbers, which results in NaN for real number inputs.

Python `

import numpy as geek a = geek.sqrt([-4, 5, -6]) print(a)

`

**Output

[ nan 2.23606798 nan]

**Explanation: The code applies **numpy.sqrt() to an array with negative real numbers. Since square roots of negative real numbers are undefined in the real number system, it returns **NaN for those values.