numpy.vander() function | Python (original) (raw)
Last Updated : 22 Apr, 2020
numpy.vander()
function is used to generate a Vandermonde matrix.
Syntax : numpy.vander(arr, N = None, increasing = False)
Parameters :
arr : [ array_like] 1-D input array.
N : [int, optional] Number of columns in the output. If N is not specified, a square array is returned (N = len(x)).
increasing : [bool, optional] Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
Return : [ndarray] dVandermonde matrix. If increasing is False, the first column is x^(N-1), the second x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, …, x^(N-1).
Code #1 :
import
numpy as geek
arr
=
geek.array([
1
,
2
,
3
,
4
,
5
])
gfg
=
geek.vander(arr)
print
(gfg)
Output :
[[ 1 1 1 1 1] [ 16 8 4 2 1] [ 81 27 9 3 1] [256 64 16 4 1] [625 125 25 5 1]]
Code #2 :
import
numpy as geek
arr
=
geek.array([
1
,
2
,
3
,
4
,
5
])
N
=
3
gfg
=
geek.vander(arr, N)
print
(gfg)
Output :
[[ 1 1 1] [ 4 2 1] [ 9 3 1] [16 4 1] [25 5 1]]
Code #3 :
import
numpy as geek
arr
=
geek.array([
1
,
2
,
3
,
4
,
5
])
gfg
=
geek.vander(arr, increasing
=
True
)
print
(gfg)
Output :
[[ 1 1 1 1 1] [ 1 2 4 8 16] [ 1 3 9 27 81] [ 1 4 16 64 256] [ 1 5 25 125 625]]
Similar Reads
- Numpy size() function | Python numpy.size() function in Python is used to count the number of elements in a NumPy array. You can use it to get the total count of all elements, or to count elements along a specific axis, such as rows or columns in a multidimensional array. This makes it useful when quickly trying to understand the 2 min read
- numpy.roots() function - Python numpy.roots() function return the roots of a polynomial with coefficients given in p. The values in the rank-1 array p are coefficients of a polynomial. If the length of p is n+1 then the polynomial is described by: p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Syntax : numpy.roots(p) Parame 1 min read
- numpy.who function - Python numpy.who() function print the NumPy arrays in the given dictionary. Syntax : numpy.who(vardict = None) Parameters : vardict : [dict, optional] A dictionary possibly containing ndarrays. Return : Returns ‘None’. If there is no dictionary passed in or vardict is None then returns NumPy arrays in the 1 min read
- numpy.typename() function – Python numpy.typename() function return a description for the given data type code. Syntax : numpy.typename(char) Parameters : char : [str] Data type code. Return : [str] Description of the input data type code. Code #1 : # Python program explaining # numpy.typename() function # importing numpy as geek imp 2 min read
- numpy.ma.where() function - Python numpy.ma.where() function return a masked array with elements from x or y, depending on condition. Syntax : numpy.ma.where(condition, x, y) Parameter : condition : [array_like, bool] Where True, yield x, otherwise yield y. x, y : [array_like, optional] Values from which to choose. x, y and condition 1 min read
- numpy.vsplit() function | Python numpy.vsplit() function split an array into multiple sub-arrays vertically (row-wise). vsplit is equivalent to split with axis=0 (default), the array is always split along the first axis regardless of the array dimension. Syntax : numpy.vsplit(arr, indices_or_sections) Parameters : arr : [ndarray] A 2 min read
- numpy.select() function - Python The numpy.select() function is used to construct an array by selecting elements from a list of choices based on multiple conditions. It is particularly useful when dealing with conditional replacements or transformations in NumPy arrays. Example:[GFGTABS] Python import numpy as np arr = np.array([10 3 min read
- vars() function in Python vars() method takes only one parameter and that too is optional. It takes an object as a parameter which may be a module, a class, an instance, or access the __dict__ attribute in Python. In this article, we will learn more about vars() function in Python. Python vars() Function Syntax Syntax: vars( 3 min read
- numpy.i0() function | Python numpy.i0() function is the modified Bessel function of the first kind, order 0. it's usually denoted by I0. Syntax : numpy.i0(x) Parameters : x : [array_like, dtype float or complex] Argument of the Bessel function. Return : [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function ev 1 min read
- Numpy recarray.var() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read