Nonoverlapping sum of two sets (original) (raw)
Non-overlapping sum of two sets
Last Updated : 23 Oct, 2024
Given two arrays A[] and B[] of size n. It is given that both array individually contains distinct elements. We need to find the sum of all elements that are not common.
**Examples:
**Input : A[] = {1, 5, 3, 8}
B[] = {5, 4, 6, 7}
**Output : 29
1 + 3 + 4 + 6 + 7 + 8 = 29**Input : A[] = {1, 5, 3, 8}
B[] = {5, 1, 8, 3}
**Output : 0
All elements are common.
**Brute Force Method: One simple approach is that for each element in A[] check whether it is present in B[], if it is present in then add it to the result. Similarly, traverse B[] and for every element that is not present in B, add it to result.
**Time Complexity: O(n2).
**Auxiliary Space: O(1), As constant extra space is used.
**Hashing concept: Create an empty hash and insert elements of both arrays into it. Now traverse hash table and add all those elements whose count is 1. (As per the question, both arrays individually have distinct elements)
Below is the implementation of the above approach:
C++ `
// CPP program to find Non-overlapping sum #include <bits/stdc++.h> using namespace std;
// function for calculating
// Non-overlapping sum of two array
int findSum(int A[], int B[], int n)
{
// Insert elements of both arrays
unordered_map<int, int> hash;
for (int i = 0; i < n; i++) {
hash[A[i]]++;
hash[B[i]]++;
}
// calculate non-overlapped sum
int sum = 0;
for (auto x: hash)
if (x.second == 1)
sum += x.first;
return sum;
}
// driver code int main() { int A[] = { 5, 4, 9, 2, 3 }; int B[] = { 2, 8, 7, 6, 3 };
// size of array
int n = sizeof(A) / sizeof(A[0]);
// function call
cout << findSum(A, B, n);
return 0;
}
Java
// Java program to find Non-overlapping sum import java.io.; import java.util.;
class GFG {
// function for calculating
// Non-overlapping sum of two array
static int findSum(int[] A, int[] B, int n)
{
// Insert elements of both arrays
HashMap<Integer, Integer> hash = new HashMap<>();
for (int i = 0; i < n; i++)
{
if (hash.containsKey(A[i]))
hash.put(A[i], 1 + hash.get(A[i]));
else
hash.put(A[i], 1);
if (hash.containsKey(B[i]))
hash.put(B[i], 1 + hash.get(B[i]));
else
hash.put(B[i], 1);
}
// calculate non-overlapped sum
int sum = 0;
for (Map.Entry entry : hash.entrySet())
{
if (Integer.parseInt((entry.getValue()).toString()) == 1)
sum += Integer.parseInt((entry.getKey()).toString());
}
return sum;
}
// Driver code
public static void main(String args[])
{
int[] A = { 5, 4, 9, 2, 3 };
int[] B = { 2, 8, 7, 6, 3 };
// size of array
int n = A.length;
// function call
System.out.println(findSum(A, B, n));
}
}
// This code is contributed by rachana soma
Python3
Python3 program to find Non-overlapping sum
from collections import defaultdict
Function for calculating
Non-overlapping sum of two array
def findSum(A, B, n):
# Insert elements of both arrays
Hash = defaultdict(lambda:0)
for i in range(0, n):
Hash[A[i]] += 1
Hash[B[i]] += 1
# calculate non-overlapped sum
Sum = 0
for x in Hash:
if Hash[x] == 1:
Sum += x
return Sum
Driver code
if name == "main":
A = [5, 4, 9, 2, 3]
B = [2, 8, 7, 6, 3]
# size of array
n = len(A)
# Function call
print(findSum(A, B, n))
This code is contributed
by Rituraj Jain
C#
// C# program to find Non-overlapping sum using System; using System.Collections.Generic;
class GFG {
// function for calculating
// Non-overlapping sum of two array
static int findSum(int[] A, int[] B, int n)
{
// Insert elements of both arrays
Dictionary<int, int> hash = new Dictionary<int, int>();
for (int i = 0; i < n; i++)
{
if (hash.ContainsKey(A[i]))
{
var v = hash[A[i]];
hash.Remove(A[i]);
hash.Add(A[i], 1 + v);
}
else
hash.Add(A[i], 1);
if (hash.ContainsKey(B[i]))
{
var v = hash[B[i]];
hash.Remove(B[i]);
hash.Add(B[i], 1 + v);
}
else
hash.Add(B[i], 1);
}
// calculate non-overlapped sum
int sum = 0;
foreach(KeyValuePair<int, int> entry in hash)
{
if ((entry.Value) == 1)
sum += entry.Key;
}
return sum;
}
// Driver code
public static void Main(String []args)
{
int[] A = { 5, 4, 9, 2, 3 };
int[] B = { 2, 8, 7, 6, 3 };
// size of array
int n = A.Length;
// function call
Console.WriteLine(findSum(A, B, n));
}
}
// This code is contributed by 29AjayKumar
JavaScript
`
**Time Complexity: O(n), since inserting in an unordered map is amortized constant.
**Auxiliary Space: O(n).
**Another method: Using set data structure
- Insert elements of Array A in the **set data structure and add into **sum
- Check if B's elements are there in set if exist then remove current element from set, otherwise add current element to sum
- Finally, return sum
Below is the implementation of the above approach:
C++ `
// CPP program to find Non-overlapping sum #include <bits/stdc++.h> using namespace std;
// function for calculating // Non-overlapping sum of two array int findSum(int A[], int B[], int n) { int sum = 0;
// Insert elements of Array A in set
// and add into sum
set<int> st;
for (int i = 0; i < n; i++) {
st.insert(A[i]);
sum += A[i];
}
// Check if B's element are there in set
// if exist then remove current element from
// set, otherwise add current element into sum
for (int i = 0; i < n; i++) {
if (st.find(B[i]) == st.end()) {
sum += B[i];
}
else {
sum -= B[i];
}
}
// Finally, return sum
return sum;
}
// Driver code int main() { int A[] = { 5, 4, 9, 2, 3 }; int B[] = { 2, 8, 7, 6, 3 };
// size of array
int n = sizeof(A) / sizeof(A[0]);
// function call
cout << findSum(A, B, n);
return 0;
}
// This code is contributed by hkdass001
Java
// Java program to find Non-overlapping sum
import java.io.; import java.util.;
class GFG {
// function for calculating
// Non-overlapping sum of two array
public static int findSum(int[] A, int[] B, int n) {
int sum = 0;
// Insert elements of Array A in set
// and add into sum
Set<Integer> st = new HashSet<>();
for (int i = 0; i < n; i++) {
st.add(A[i]);
sum += A[i];
}
// Check if B's element are there in set
// if exist then remove current element from
// set, otherwise add current element into sum
for (int i = 0; i < n; i++) {
if (!st.contains(B[i])) {
sum += B[i];
}
else {
sum -= B[i];
}
}
// Finally, return sum
return sum;
}
public static void main (String[] args) {
int[] A = { 5, 4, 9, 2, 3 };
int[] B = { 2, 8, 7, 6, 3 };
// size of array
int n = A.length;
// function call
System.out.println(findSum(A, B, n));
}
}
// This code is contributed by lokesh.
Python
python program to find Non-overlapping sum
function for calculating
Non-overlapping sum of two array
def findSum(A, B, n): sum = 0;
# Insert elements of Array A in set
# and add into sum
st = set();
for i in range(0,n):
st.add(A[i]);
sum += A[i];
# Check if B's element are there in set
# if exist then remove current element from
# set, otherwise add current element into sum
for i in range (0, n):
if (B[i] in st):
sum -= B[i];
else :
sum += B[i];
# Finally, return sum
return sum;
Driver code
A = [ 5, 4, 9, 2, 3 ]; B = [ 2, 8, 7, 6, 3 ];
size of array
n = len(A);
function call
print(findSum(A, B, n));
C#
// C# code for the above approach
using System; using System.Collections.Generic;
public class GFG {
// function for calculating
// Non-overlapping sum of two array
public static int FindSum(int[] A, int[] B, int n)
{
int sum = 0;
// Insert elements of Array A in set
// and add into sum
HashSet<int> st = new HashSet<int>();
for (int i = 0; i < n; i++) {
st.Add(A[i]);
sum += A[i];
}
// Check if B's element are there in set
// if exist then remove current element from
// set, otherwise add current element into sum
for (int i = 0; i < n; i++) {
if (!st.Contains(B[i])) {
sum += B[i];
}
else {
sum -= B[i];
}
}
// Finally, return sum
return sum;
}
static public void Main()
{
// Code
int[] A = { 5, 4, 9, 2, 3 };
int[] B = { 2, 8, 7, 6, 3 };
// size of array
int n = A.Length;
// function call
Console.WriteLine(FindSum(A, B, n));
}
}
// This code is contributed by lokeshmvs21.
JavaScript
// Javascript program to find Non-overlapping sum
// function for calculating // Non-overlapping sum of two array function findSum(A, B, n) { let sum = 0;
// Insert elements of Array A in set
// and add into sum
let st = new Set();
for (let i = 0; i < n; i++) {
st.add(A[i]);
sum += A[i];
}
// Check if B's element are there in set
// if exist then remove current element from
// set, otherwise add current element into sum
for (let i = 0; i < n; i++) {
if (!st.has(B[i])) {
sum += B[i];
}
else {
sum -= B[i];
}
}
// Finally, return sum
return sum;
}
// Driver code let A = [ 5, 4, 9, 2, 3 ]; let B = [ 2, 8, 7, 6, 3 ];
// size of array
let n = A.length;
// function call
document.write(findSum(A, B, n));
`
**Time Complexity: O(n*log n)
**Auxiliary Space: O(n)