Program to check if matrix is lower triangular (original) (raw)
Last Updated : 20 Feb, 2023
Given a square matrix and the task is to check the matrix is in lower triangular form or not. A square matrix is called lower triangular if all the entries above the main diagonal are zero.
Examples:
Input : mat[4][4] = {{1, 0, 0, 0}, {1, 4, 0, 0}, {4, 6, 2, 0}, {0, 4, 7, 6}}; Output : Matrix is in lower triangular form.
Input : mat[4][4] = {{1, 0, 0, 0}, {4, 3, 0, 1}, {7, 9, 2, 0}, {8, 5, 3, 6}}; Output : Matrix is not in lower triangular form.
Implementation:
C++ `
// Program to check lower // triangular matrix. #include <bits/stdc++.h> #define N 4 using namespace std;
// Function to check matrix is in // lower triangular form or not. bool isLowerTriangularMatrix(int mat[N][N]) { for (int i = 0; i < N-1; i++) for (int j = i + 1; j < N; j++) if (mat[i][j] != 0) return false; return true; }
// Driver function. int main() { int mat[N][N] = { { 1, 0, 0, 0 }, { 1, 4, 0, 0 }, { 4, 6, 2, 0 }, { 0, 4, 7, 6 } };
// Function call
if (isLowerTriangularMatrix(mat))
cout << "Yes";
else
cout << "No";
return 0;
}
Java
// Java Program to check for // a lower triangular matrix. import java.io.*;
class Lower_triangular { int N = 4;
// Function to check matrix is
// in lower triangular form or not.
boolean isLowerTriangularMatrix(int mat[][])
{
for (int i = 0; i < N-1; i++)
for (int j = i + 1; j < N; j++)
if (mat[i][j] != 0)
return false;
return true;
}
// Driver function.
public static void main(String args[])
{
Lower_triangular ob = new Lower_triangular();
int mat[][] = { { 1, 0, 0, 0 },
{ 1, 4, 0, 0 },
{ 4, 6, 2, 0 },
{ 0, 4, 7, 6 } };
// Function call
if (ob.isLowerTriangularMatrix(mat))
System.out.println("Yes");
else
System.out.println("No");
}
}
// This code is contributed by Anshika Goyal.
Python3
Python3 Program to check
lower triangular matrix.
Function to check matrix
is in lower triangular
def islowertriangular(M): for i in range(0, len(M)): for j in range(i + 1, len(M)): if(M[i][j] != 0): return False return True
Driver function.
M = [[1,0,0,0], [1,4,0,0], [4,6,2,0], [0,4,7,6]]
if islowertriangular(M): print ("Yes") else: print ("No")
This code is contributed by Anurag Rawat
C#
// C# program to check for // a lower triangular matrix. using System;
class Lower_triangular { int N = 4;
// Function to check matrix is
// in lower triangular form or not.
bool isLowerTriangularMatrix(int[, ] mat)
{
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++)
if (mat[i, j] != 0)
return false;
return true;
}
// Driver function.
public static void Main()
{
Lower_triangular ob = new Lower_triangular();
int[, ] mat = { { 1, 0, 0, 0 },
{ 1, 4, 0, 0 },
{ 4, 6, 2, 0 },
{ 0, 4, 7, 6 } };
// Function call
if (ob.isLowerTriangularMatrix(mat))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by vt_m.
PHP
JavaScript
`
Time Complexity: O(n2), where n represents the number of rows and columns of the matrix.
Auxiliary Space: O(1), no extra space is required, so it is a constant.