PySpark Linear Regression Get Coefficients (original) (raw)
Last Updated : 28 Apr, 2025
In this tutorial series, we are going to cover Linear Regression using Pyspark.Linear Regressionis a machine learning algorithm that is used to perform regression methods. Linear Regression is a supervised machine learning algorithm where we know inputs as well as outputs**.**
Loading Dataframe :
We will be using the data for "E-commerce Customer Data for a company's website and mobile app". The task is to predict the customer's yearly spending on the company's product.
Dataset link: [https://www.kaggle.com/datasets/pawankumargunjan/ecommercecustomers\]
Step 1: Starting the Pyspark Server:
Python3 `
Starting the Spark Session
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('LinearRegression').getOrCreate() spark
`
Output:
SparkSession - in-memory SparkContext
Spark UI Version v3.3.1 Master local[*] AppName LinearRegression
Step 2: Load the dataset:
Python3 `
Reading the data
df = spark.read.csv('Ecommerce_Customers.csv',inferSchema=True, header=True)
Showing the data
df.show(5)
`
Output:
+--------------------+--------------------+----------------+------------------+------------------+------------------+--------------------+-------------------+ | Email| Address| Avatar|Avg Session Length| Time on App| Time on Website|Length of Membership|Yearly Amount Spent| +--------------------+--------------------+----------------+------------------+------------------+------------------+--------------------+-------------------+ |mstephenson@ferna...|835 Frank TunnelW...| Violet| 34.49726772511229| 12.65565114916675| 39.57766801952616| 4.0826206329529615| 587.9510539684005| | hduke@hotmail.com|4547 Archer Commo...| DarkGreen| 31.92627202636016|11.109460728682564|37.268958868297744| 2.66403418213262| 392.2049334443264| | pallen@yahoo.com|24645 Valerie Uni...| Bisque|33.000914755642675|11.330278057777512|37.110597442120856| 4.104543202376424| 487.54750486747207| |riverarebecca@gma...|1414 David Throug...| SaddleBrown| 34.30555662975554|13.717513665142507| 36.72128267790313| 3.120178782748092| 581.8523440352177| |mstephens@davidso...|14023 Rodriguez P...|MediumAquaMarine| 33.33067252364639|12.795188551078114| 37.53665330059473| 4.446308318351434| 599.4060920457634| +--------------------+--------------------+----------------+------------------+------------------+------------------+--------------------+-------------------+ only showing top 5 rows
Step 3: Check the columns name
Python3 `
#Shows the columns of the data df.columns
`
Output:
['Email', 'Address', 'Avatar', 'Avg Session Length', 'Time on App', 'Time on Website', 'Length of Membership', 'Yearly Amount Spent']
Step 4: The next task is to assemble the data in form of vectors which will be the "features".
Python3 `
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler( inputCols=['Avg Session Length', "Time on App", "Time on Website", 'Length of Membership'], outputCol="features")
output = assembler.transform(df) output.select("features").show(5)
`
Output:
+--------------------+ | features| +--------------------+ |[34.4972677251122...| |[31.9262720263601...| |[33.0009147556426...| |[34.3055566297555...| |[33.3306725236463...| +--------------------+ only showing top 5 rows
Step 5: Split the whole data into train data and test data which will be used for training and testing respectively.
Python3 `
final_data = output.select("features",'Yearly Amount Spent') train_data,test_data = final_data.randomSplit([0.7,0.3])
`
Let's describe the train data and test data.
Python3 `
train_data.describe().show()
test_data.describe().show()
`
Output:
+-------+-------------------+ |summary|Yearly Amount Spent| +-------+-------------------+ | count| 357| | mean| 496.7071530755217| | stddev| 80.03111843524778| | min| 256.67058229005585| | max| 765.5184619388373| +-------+-------------------+
+-------+-------------------+ |summary|Yearly Amount Spent| +-------+-------------------+ | count| 143| | mean| 505.82213623310577| | stddev| 77.39011604239676| | min| 275.9184206503857| | max| 744.2218671047146| +-------+-------------------+
Step 6: create a model for Linear Regression and fit it on training data.
Python3 `
from pyspark.ml.regression import LinearRegression
Create a Linear Regression Model object
lr = LinearRegression(labelCol='Yearly Amount Spent')
Fit the model to the data and call this model lrModel
lrModel = lr.fit(train_data) lrModel
`
Output:
LinearRegressionModel: uid=LinearRegression_74214a54e364, numFeatures=4
Step 7: Print the coefficient and Intercept of the model
Python3 `
Print the coefficients and intercept for linear regression
print("Coefficients: {}".format(lrModel.coefficients)) print('Intercept: {}'.format(lrModel.intercept))
`
Output:
Coefficients: [25.964105285025216,38.93669968512164,0.2862951403317341,61.42916517189798] Intercept: -1055.4964671721655
Step 8: Evaluation of model on test data:
Python3 `
test_results = lrModel.evaluate(test_data)
#Printing Residuals which is the difference between the actua #l value and the value predicted by the model (y-ลท) for any given point test_results.residuals.show(5)
`
Output:
+-------------------+ | residuals| +-------------------+ | 11.275316471318774| | 0.6070843579793177| | 6.966802347383464| | -6.151576882623033| |-7.3822955579703375| +-------------------+ only showing top 5 rows
Step 9: Prediction on new dataset
Python3 `
unlabeled_data = test_data.select('features')
predictions = lrModel.transform(unlabeled_data) predictions.show(5)
`
Output:
+--------------------+------------------+ | features| prediction| +--------------------+------------------+ |[29.5324289670579...| 397.3650346013087| |[30.5743636841713...|441.45732940008634| |[30.9716756438877...|487.67180740950926| |[31.0613251567161...|493.70703494052464| |[31.1280900496166...| 564.634982305025| +--------------------+------------------+ only showing top 5 rows
Step 10: Calculating Root Mean Squared Error and Mean Squared Error for checking the efficiency of our model:
Python3 `
print("RMSE: {}".format(test_results.rootMeanSquaredError)) print("MSE: {}".format(test_results.meanSquaredError))
`
Output:
RMSE: 9.965510046039142 MSE: 99.31139047770706
Step 11: Stop the session
Python3 `
spark.stop()
`