Python | numpy.assert_allclose() method (original) (raw)
Last Updated : 17 Sep, 2019
With the help of **numpy.assert_allclose()**
method, we can get the assertion errors when two array objects are not equal upto the mark by using numpy.assert_allclose()
.
Syntax :
numpy.assert_allclose(actual_array, desired_array)
Return : Return the Assertion error if two array objects are not equal.
Example #1 :
In this example we can see that using numpy.assert_allclose()
method, we are able to get the assertion error if two arrays are not equal.
import
numpy as np
gfg1
=
[
1
,
2
,
3
]
gfg2
=
np.array(gfg1)
if
np.testing.assert_allclose(gfg1, gfg2):
`` print
(
"Matched"
)
Output :
Matched
Example #2 :
import
numpy as np
gfg1
=
[
1
,
2
,
3
]
gfg2
=
np.array([
4
,
5
,
6
])
print
(np.testing.assert_allclose(gfg1, gfg2))
Output :
Mismatch: 100%
Max absolute difference: 3
Max relative difference: 0.75
gfg1: array([1, 2, 3])
gfg2: array([4, 5, 6])
Similar Reads
- Python | Numpy np.assert_almost_equal() method With the help of np.assert_almost_equal() method, we can get the assertion error if two items are not equal up to desired precision value by using np.assert_almost_equal() method. Syntax : np.assert_almost_equal(actual, desired, decimal) Return : Return the assertion error if two values are not equa 1 min read
- numpy.allclose() in Python numpy.allclose() function is used to find if two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(arr2)) and the absolute difference atol are added together to compare against the absolute differenc 3 min read
- Python | Numpy np.assert_array_almost_equal() method With the help of np.assert_array_almost_equal() method, we can get the assertion error if two array objects are not equal up to desired precision value by using np.assert_array_almost_equal() method. Syntax : np.assert_array_almost_equal(actual, desired, decimal) Return : Return the assertion error 1 min read
- Python | Numpy np.assert_approx_equal() method With the help of np.assert_approx_equal() method, we can get the assertion error if two items are not equal up to significant digits by using np.assert_approx_equal() method. Syntax : np.assert_approx_equal(actual, desired, significant) Return : Return the assertion error if two values are not equal 1 min read
- Python | Numpy np.assert_array_less() method With the help of np.assert_array_less() method, we can get the assertion error if two array like objects are not ordered by less than by using np.assert_array_less() method. Syntax : np.assert_array_less(x, y) Return : Return assertion error if two array objects are unequal. Example #1 : In this exa 1 min read
- numpy.ma.allclose() function - Python numpy.ma.allclose() function returns True if two arrays are element-wise equal within a tolerance. This function is equivalent to allclose except that masked values are treated as equal (default) or unequal, depending on the masked_equal argument. Syntax : numpy.ma.allclose(a, b, masked_equal = True 2 min read
- Python | Numpy np.assert_equal() method With the help of np.assert_equal() method, we can get the assertion error when two objects are not equal by using np.assert_equal() method. Syntax : np.assert_equal(actual, desired) Return : Return assertion error if two object are unequal. Example #1 : In this example we can see that by using np.as 1 min read
- Python | Numpy np.assert_array_equal() method With the help of np.assert_array_equal() method, we can get the assertion error if two array like objects are not equal by using np.assert_array_equal() method. Syntax : np.assert_array_equal(x, y) Return : Return the assertion error if two objects are not equal. Example #1 : In this example we can 1 min read
- Python | numpy.lookfor() method With the help of numpy.lookfor() method, we can get the information about the module in the numpy by using numpy.lookfor() method. Syntax : numpy.lookfor(module_name) Return : Return the information about the module. Example #1 : In this example we can see that by using numpy.lookfor() method, we ar 1 min read
- Python | Numpy np.legzero() method np.legzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.legzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.legzero() method # import numpy and legzero import numpy as np from numpy.polynomial.legendre import legzer 1 min read