Python | Numpy np.assert_approx_equal() method (original) (raw)
Last Updated : 30 Jan, 2020
With the help of **np.assert_approx_equal()**
method, we can get the assertion error if two items are not equal up to significant digits by using np.assert_approx_equal()
method.
Syntax :
np.assert_approx_equal(actual, desired, significant)
Return : Return the assertion error if two values are not equal.
Example #1 :
In this example we can see that by using np.assert_approx_equal()
method, we are able to get the assertion error if two values are not equal up to a significant digit by using this method.
import
numpy as np
import
numpy.testing as npt
gfg
=
npt.assert_approx_equal(
1.2222222222
,
1.2222222222
, significant
=
5
)
print
(gfg)
Output :
Nope
Example #2 :
import
numpy as np
import
numpy.testing as npt
gfg
=
npt.assert_approx_equal(
1.2222222222
,
1.23422222
, significant
=
5
)
print
(gfg)
Output :
AssertionError:
Items are not equal to 5 significant digits:
ACTUAL: 1.2222222222
DESIRED: 1.23422222
Similar Reads
- Python | Numpy np.assert_array_equal() method With the help of np.assert_array_equal() method, we can get the assertion error if two array like objects are not equal by using np.assert_array_equal() method. Syntax : np.assert_array_equal(x, y) Return : Return the assertion error if two objects are not equal. Example #1 : In this example we can 1 min read
- Python | Numpy np.assert_equal() method With the help of np.assert_equal() method, we can get the assertion error when two objects are not equal by using np.assert_equal() method. Syntax : np.assert_equal(actual, desired) Return : Return assertion error if two object are unequal. Example #1 : In this example we can see that by using np.as 1 min read
- Python | Numpy np.assert_almost_equal() method With the help of np.assert_almost_equal() method, we can get the assertion error if two items are not equal up to desired precision value by using np.assert_almost_equal() method. Syntax : np.assert_almost_equal(actual, desired, decimal) Return : Return the assertion error if two values are not equa 1 min read
- Python | Numpy np.assert_array_almost_equal() method With the help of np.assert_array_almost_equal() method, we can get the assertion error if two array objects are not equal up to desired precision value by using np.assert_array_almost_equal() method. Syntax : np.assert_array_almost_equal(actual, desired, decimal) Return : Return the assertion error 1 min read
- Python | Numpy np.assert_string_equal() method With the help of np.assert_string_equal() method, we can get the assertion error if two string are not equal by using np.assert_string_equal() method. Syntax : np.assert_string_equal(actual, desired) Return : Return assertion error if two strings are unequal. Example #1 : In this example we can see 1 min read
- Python | Numpy np.assert_array_less() method With the help of np.assert_array_less() method, we can get the assertion error if two array like objects are not ordered by less than by using np.assert_array_less() method. Syntax : np.assert_array_less(x, y) Return : Return assertion error if two array objects are unequal. Example #1 : In this exa 1 min read
- Python | numpy.assert_allclose() method With the help of numpy.assert_allclose() method, we can get the assertion errors when two array objects are not equal upto the mark by using numpy.assert_allclose(). Syntax : numpy.assert_allclose(actual_array, desired_array) Return : Return the Assertion error if two array objects are not equal. Ex 1 min read
- Python | Numpy np.leg2poly() method np.leg2poly() method is used to convert a legendre series to a polynomial. Syntax : np.leg2poly(c) Parameters: c :[array_like] 1-D arrays of legendre series coefficients ordered from low to high. Return : [ndarray] 1-D array containing the coefficients of the equivalent polynomial. Code #1 : # Pytho 1 min read
- numpy.array_equal() in Python numpy.array_equal(arr1, arr2) : This logical function that checks if two arrays have the same shape and elements. Parameters : arr1 : [array_like]Input array or object whose elements, we need to test. arr2 : [array_like]Input array or object whose elements, we need to test. Return : True, if both ar 1 min read
- numpy.greater_equal() in Python The numpy.greater_equal() checks whether x1 >= x2 or not. Syntax : numpy.greater_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are sca 2 min read