Python | Numpy np.assert_array_equal() method (original) (raw)
Last Updated : 23 Jan, 2020
With the help of **np.assert_array_equal()**
method, we can get the assertion error if two array like objects are not equal by using np.assert_array_equal()
method.
Syntax :
np.assert_array_equal(x, y)
Return : Return the assertion error if two objects are not equal.
Example #1 :
In this example we can see that by using np.assert_array_equal()
method, we are able to get the assertion error if two error like objects are not equal by using this method.
import
numpy as np
import
numpy.testing as npt
gfg
=
npt.assert_array_equal([
1.22
,
0.22
], [
1.22
,
0.22
])
print
(gfg)
Output :
None
Example #2 :
import
numpy as np
import
numpy.testing as npt
gfg
=
npt.assert_array_equal([
1.22
,
1.22
], [
2.22
,
0.22
])
print
(gfg)
Output :
AssertionError:
Arrays are not equalMismatch: 100%
Max absolute difference: 1.
Max relative difference: 4.54545455
x: array([1.22, 1.22])
y: array([2.22, 0.22])
Similar Reads
- Python | Numpy np.assert_equal() method With the help of np.assert_equal() method, we can get the assertion error when two objects are not equal by using np.assert_equal() method. Syntax : np.assert_equal(actual, desired) Return : Return assertion error if two object are unequal. Example #1 : In this example we can see that by using np.as 1 min read
- Python | Numpy np.assert_array_almost_equal() method With the help of np.assert_array_almost_equal() method, we can get the assertion error if two array objects are not equal up to desired precision value by using np.assert_array_almost_equal() method. Syntax : np.assert_array_almost_equal(actual, desired, decimal) Return : Return the assertion error 1 min read
- Python | Numpy np.assert_approx_equal() method With the help of np.assert_approx_equal() method, we can get the assertion error if two items are not equal up to significant digits by using np.assert_approx_equal() method. Syntax : np.assert_approx_equal(actual, desired, significant) Return : Return the assertion error if two values are not equal 1 min read
- Python | Numpy np.assert_array_less() method With the help of np.assert_array_less() method, we can get the assertion error if two array like objects are not ordered by less than by using np.assert_array_less() method. Syntax : np.assert_array_less(x, y) Return : Return assertion error if two array objects are unequal. Example #1 : In this exa 1 min read
- Python | Numpy np.assert_almost_equal() method With the help of np.assert_almost_equal() method, we can get the assertion error if two items are not equal up to desired precision value by using np.assert_almost_equal() method. Syntax : np.assert_almost_equal(actual, desired, decimal) Return : Return the assertion error if two values are not equa 1 min read
- Python | Numpy np.assert_string_equal() method With the help of np.assert_string_equal() method, we can get the assertion error if two string are not equal by using np.assert_string_equal() method. Syntax : np.assert_string_equal(actual, desired) Return : Return assertion error if two strings are unequal. Example #1 : In this example we can see 1 min read
- Numpy MaskedArray asarray() method | Python numpy.ma.asarray() function is used when we want to convert input to a masked array of the given data-type. No copy is performed if the input is already a ndarray. If arr is a subclass of MaskedArray, a base class MaskedArray is returned. Syntax : numpy.ma.asarray(arr, dtype=None, order=None) Parame 2 min read
- numpy.array_equal() in Python numpy.array_equal(arr1, arr2) : This logical function that checks if two arrays have the same shape and elements. Parameters : arr1 : [array_like]Input array or object whose elements, we need to test. arr2 : [array_like]Input array or object whose elements, we need to test. Return : True, if both ar 1 min read
- Numpy MaskedArray asanyarray() method | Python numpy.ma.asanyarray() function is used when we want to convert input to a masked array, conserving subclasses. If arr is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an ndarray. Syntax : numpy.ma.asanyarray(arr, dtype=None) Parameters : arr : [array 2 min read
- Python | numpy.assert_allclose() method With the help of numpy.assert_allclose() method, we can get the assertion errors when two array objects are not equal upto the mark by using numpy.assert_allclose(). Syntax : numpy.assert_allclose(actual_array, desired_array) Return : Return the Assertion error if two array objects are not equal. Ex 1 min read