Python | Numpy np.ifft() method (original) (raw)
Last Updated : 21 Nov, 2019
With the help of **np.ifft()**
method, we can get the 1-D Inverse Fourier Transform by using np.ifft()
method.
Syntax :
np.ifft(Array)
Return : Return a series of inverse fourier transformation.
Example #1 :
In this example we can see that by using np.ifft()
method, we are able to get the series of inverse fourier transformation by using this method.
import
numpy as np
a
=
np.array([
5
,
4
,
6
,
3
,
7
])
gfg
=
np.fft.ifft(a)
print
(gfg)
Output :
[ 5. + 0.j 0.2236068 – 0.21796276j -0.2236068 – 0.92330506j
-0.2236068 + 0.92330506j 0.2236068 + 0.21796276j]
Example #2 :
import
numpy as np
a
=
np.array([
-
5.5
,
4.4
,
-
6.6
,
3.3
,
-
7.7
])
gfg
=
np.fft.ifft(a)
print
(gfg)
Output :
[-2.42 + 0.j -0.77 + 1.13774197j -0.77 + 3.30553221j -0.77 – 3.30553221j
-0.77 – 1.13774197j]
Similar Reads
- Python | Numpy np.ifft2() method With the help of np.ifft2() method, we can get the 2-D Inverse Fourier Transform by using np.ifft2() method. Syntax : np.fft2(Array) Return : Return a 2-D series of inverse fourier transformation. Example #1 : In this example we can see that by using np.ifft2() method, we are able to get the 2-D ser 1 min read
- Python | Numpy np.ifftn() method With the help of np.ifftn() method, we can get the N-D Inverse Fourier Transform by using np.fftn() method. Syntax : np.ifftn(Array) Return : Return a N-D series of inverse fourier transformation. Example #1 : In this example we can see that by using np.ifftn() method, we are able to get the N-D ser 1 min read
- Python | Numpy np.fft() method With the help of np.fft() method, we can get the 1-D Fourier Transform by using np.fft() method. Syntax : np.fft(Array) Return : Return a series of fourier transformation. Example #1 : In this example we can see that by using np.fft() method, we are able to get the series of fourier transformation b 1 min read
- Python | Numpy np.fftn() method With the help of np.fftn() method, we can get the N-D Fourier Transform by using np.fftn() method. Syntax : np.fftn(Array) Return : Return a N-D series of fourier transformation. Example #1 : In this example we can see that by using np.fftn() method, we are able to get the N-D series of fourier tran 1 min read
- Python | Numpy np.fft2() method With the help of np.fft2() method, we can get the 2-D Fourier Transform by using np.fft2() method. Syntax : np.fft2(Array) Return : Return a 2-D series of fourier transformation. Example #1 : In this example we can see that by using np.fft2() method, we are able to get the 2-D series of fourier tran 1 min read
- Python | Numpy np.digitize() method With the help of np.digitize() method, we can get the indices of the bins to which each value belongs in an array. Syntax : np.digitize(Array, Bin, Right)Return : Return an array of indices of the bins. Example #1 : In this example we can see that by using np.digitize() method, we are able to get th 1 min read
- Python | numpy.isnat() method With the help of numpy.isnat() method, we can get the boolean value as true if date defined in a np.datetime64() method is not a time by using numpy.isnat() method. Syntax : numpy.isnat() Return : Return the boolean value if time is not found. Example #1 : In this example we can see that by using nu 1 min read
- Python | Numpy np.lagzero() method np.lagzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.lagzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.lagzero() method # import numpy and lagzero import numpy as np from numpy.polynomial.laguerre import lagzer 1 min read
- Python | numpy.lookfor() method With the help of numpy.lookfor() method, we can get the information about the module in the numpy by using numpy.lookfor() method. Syntax : numpy.lookfor(module_name) Return : Return the information about the module. Example #1 : In this example we can see that by using numpy.lookfor() method, we ar 1 min read
- Numpy count_nonzero method | Python numpy.count_nonzero() function counts the number of non-zero values in the array arr. Syntax : numpy.count_nonzero(arr, axis=None) Parameters : arr : [array_like] The array for which to count non-zeros. axis : [int or tuple, optional] Axis or tuple of axes along which to count non-zeros. Default is 1 min read