Python | Numpy np.lagdiv() method (original) (raw)
Last Updated : 29 Dec, 2019
**np.lagdiv()**
method is used to divide one Laguerre series to another.It returns the quotient-with-remainder of two Laguerre series c1 / c2.
Syntax :
np.lagdiv(c1, c2)
Parameters:
**c1, c2 :**[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high.Return : [ndarray] Laguerre series coefficients representing the quotient and remainder.
Code #1 :
import
numpy as np
import
numpy.polynomial.laguerre as geek
s1
=
(
2
,
4
,
8
)
s2
=
(
1
,
3
,
5
)
res
=
geek.lagdiv(s1, s2)
print
(res)
Output:
(array([ 1.6]), array([ 0.4, -0.8]))
Code #2 :
import
numpy as np
import
numpy.polynomial.laguerre as geek
s1
=
(
10
,
20
,
30
,
40
,
50
)
s2
=
(
2
,
4
,
6
,
8
,
10
)
res
=
geek.lagdiv(s1, s2)
print
(res)
Output:
(array([ 5.]), array([ 0.]))
Similar Reads
- Python | Numpy np.legdiv() method np.legdiv() method is used to divide one Legendre series to another.It returns the quotient-with-remainder of two Legendre series c1 / c2. Syntax : np.legdiv(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Legendre series coefficients ordered from low to high. Return : [ndarray] Legendre se 1 min read
- Python | Numpy np.lagder() method np.lagroots() method is used to differentiate a Laguerre series. Syntax : np.lagder(c, m=1, scl=1, axis=0) Parameters: c :[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high. m :[int, optional] Number of derivatives taken, must be non-negative.Default is 1. scl :[scalar, 1 min read
- Python | Numpy np.lagval() method With the help of np.lagval() method, we can get the laguerre series at point x by using np.lagval() method. Syntax : np.lagval(x, c) Return : Return the laguerre series at point x. Example #1 : In this example we can see that by using np.lagval() method, we are able to get the laguerre series at poi 1 min read
- Python | Numpy np.lagfit() method With the help of np.lagfit() method, we can get the least squares fit of laguerre series of a given data by using np.lagfit() method. Syntax : np.lagfit(x, y, deg) Return : Return the least squares fit of laguerre series to data. Example #1 : In this example we can see that by using np.lagfit() meth 1 min read
- Python | Numpy np.lagadd() method np.lagadd() method is used to add one Laguerre series to another.It returns the sum of two Laguerre series c1 + c2. Syntax : np.lagadd(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Array representing the Laguerre se 1 min read
- Python | Numpy np.lagdomain() method With the help of np.lagdomain() method, we can get the filter having value array([0, 1]) in laguerre series. Syntax : np.lagdomain Return : Return filter of array([0, 1]) Example #1 : # Python program explaining # numpy.lagdomain() method # import numpy and lagdomain import numpy as np from numpy.po 1 min read
- Python | Numpy np.lagsub() method np.lagub() method is used to subtract one Laguerre series to another.It returns the difference of two Laguerre series c1 - c2. Syntax : np.lagub(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Laguerre series coeffici 1 min read
- Python | Numpy np.lagval2d() method With the help of np.lagval2d() method, we can get the 2-D laguerre series at point x by using np.lagval2d() method. Syntax : np.lagval2d(x, y, c) Return : Return the 2-D laguerre series at point x and y. Example #1 : In this example we can see that by using np.lagval2d() method, we are able to get t 1 min read
- Python | Numpy np.lagval3d() method With the help of np.lagval3d() method, we can get the 3-D laguerre series at point x by using np.lagval3d() method. Syntax : np.lagval3d(x, y, z, c) Return : Return the 3-D laguerre series at point x, y and z. Example #1 : In this example we can see that by using np.lagval3d() method, we are able to 1 min read
- Python | Numpy np.lagmul() method np.lagmul() method is used to multiply one Laguerre series to another.It returns the product of two Laguerre series c1 * c2. Syntax : np.lagmul(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Laguerre series coefficie 1 min read