Python | Numpy np.lagdomain() method (original) (raw)
Last Updated : 29 Dec, 2019
With the help of **np.lagdomain()**
method, we can get the filter having value array([0, 1]) in laguerre series.
Syntax :
np.lagdomain
Return : Return filter of array([0, 1])
Example #1 :
import
numpy as np
from
numpy.polynomial.laguerre
import
lagdomain
for
i
in
range
(
5
):
`` ans
=
lagdomain
+
[i, i
+
1
]
`` print
(ans)
Output :
[-1 2]
[0 3]
[1 4]
[2 5]
[3 6]
Example #2 :
import
numpy as np
from
numpy.polynomial.laguerre
import
lagdomain
for
i
in
range
(
4
):
`` ans
=
lagdomain
+
[i
-
1
, i
+
1
]
`` print
(ans)
Output :
[-2 2]
[-1 3]
[0 4]
[1 5]
[2 6]
Similar Reads
- Python | Numpy np.lagcompanion() method np.lagcompanion() method is used to return the companion matrix of Laguerre series. Syntax : np.lagcompanion(c) Parameters: c :[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Companion matrix of dimensions (deg, deg). Code #1 : # Python program ex 1 min read
- Python | Numpy np.lagdiv() method np.lagdiv() method is used to divide one Laguerre series to another.It returns the quotient-with-remainder of two Laguerre series c1 / c2. Syntax : np.lagdiv(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Laguerre se 1 min read
- Python | Numpy np.lagval() method With the help of np.lagval() method, we can get the laguerre series at point x by using np.lagval() method. Syntax : np.lagval(x, c) Return : Return the laguerre series at point x. Example #1 : In this example we can see that by using np.lagval() method, we are able to get the laguerre series at poi 1 min read
- Python | Numpy np.lagder() method np.lagroots() method is used to differentiate a Laguerre series. Syntax : np.lagder(c, m=1, scl=1, axis=0) Parameters: c :[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high. m :[int, optional] Number of derivatives taken, must be non-negative.Default is 1. scl :[scalar, 1 min read
- Python | Numpy np.lagfit() method With the help of np.lagfit() method, we can get the least squares fit of laguerre series of a given data by using np.lagfit() method. Syntax : np.lagfit(x, y, deg) Return : Return the least squares fit of laguerre series to data. Example #1 : In this example we can see that by using np.lagfit() meth 1 min read
- Python | Numpy np.lagpow() method np.lagpow() method is used to raise a Laguerre series to a given power.It returns the Laguerre series c raised to the power pow. Syntax : np.lagpow(c, pow, maxpower=16) Parameters: c :[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high. pow :[integer] Power to which the 2 min read
- Python | Numpy np.lagmul() method np.lagmul() method is used to multiply one Laguerre series to another.It returns the product of two Laguerre series c1 * c2. Syntax : np.lagmul(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Laguerre series coefficie 1 min read
- Python | Numpy np.lagvander() method With the help of np.lagvander() method, we can get the Pseudo-Vandermonde matrix from given array having degree which is passed as parameter by using np.lagvander() method. Syntax : np.lagvander(arr, degree) Parameters: arr :[ array_like ] Array of points. The dtype is converted to float64 or comple 2 min read
- Python | Numpy np.lagzero() method np.lagzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.lagzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.lagzero() method # import numpy and lagzero import numpy as np from numpy.polynomial.laguerre import lagzer 1 min read
- Python | Numpy np.lag2poly() method np.lag2poly() method is used to convert a Laguerre series to a polynomial. Syntax : np.lag2poly(c) Parameters: c :[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] 1-D array containing the coefficients of the equivalent polynomial. Code #1 : # Pytho 1 min read