Python | Numpy np.laggauss() method (original) (raw)

Last Updated : 29 Dec, 2019

**np.laggauss()** Computes the sample points and weights for Gauss-Laguerre quadrature. These sample points and weights will correctly integrate polynomials of degree 2*deg - 1 or less over the interval [0, inf] with the weight function f(x) = exp(-x)

Syntax : np.laggauss(deg) Parameters: **deg :**[int] Number of sample points and weights. It must be >= 1.Return : 1.[ndarray] 1-D ndarray containing the sample points. 2.[ndarray] 1-D ndarray containing the weights.

Code #1 :

Python3 `

Python program explaining

numpy.laggauss() method

importing numpy as np

and numpy.polynomial.laguerre module as geek

import numpy as np import numpy.polynomial.laguerre as geek

Input degree = 2

degree = 2

using np.laggauss() method

res = geek.laggauss(degree)

Resulting array of sample point and weight

print (res)

`

Output:

(array([ 0.58578644, 3.41421356]), array([ 0.85355339, 0.14644661]))

Code #2 :

Python3 `

Python program explaining

numpy.laggauss() method

importing numpy as np

and numpy.polynomial.laguerre module as geek

import numpy as np import numpy.polynomial.laguerre as geek

Input degree

degree = 3

using np.laggauss() method

res = geek.laggauss(degree)

Resulting array of sample point and weight

print (res)

`

Output:

(array([ 0.41577456, 2.29428036, 6.28994508]), array([ 0.71109301, 0.27851773, 0.01038926]))