Python | Numpy np.laggauss() method (original) (raw)
Last Updated : 29 Dec, 2019
**np.laggauss()**
Computes the sample points and weights for Gauss-Laguerre quadrature. These sample points and weights will correctly integrate polynomials of degree 2*deg - 1
or less over the interval [0, inf]
with the weight function f(x) = exp(-x)
Syntax :
np.laggauss(deg)
Parameters: **deg :**[int] Number of sample points and weights. It must be >= 1.Return : 1.[ndarray] 1-D ndarray containing the sample points. 2.[ndarray] 1-D ndarray containing the weights.
Code #1 :
Python3 `
Python program explaining
numpy.laggauss() method
importing numpy as np
and numpy.polynomial.laguerre module as geek
import numpy as np import numpy.polynomial.laguerre as geek
Input degree = 2
degree = 2
using np.laggauss() method
res = geek.laggauss(degree)
Resulting array of sample point and weight
print (res)
`
Output:
(array([ 0.58578644, 3.41421356]), array([ 0.85355339, 0.14644661]))
Code #2 :
Python3 `
Python program explaining
numpy.laggauss() method
importing numpy as np
and numpy.polynomial.laguerre module as geek
import numpy as np import numpy.polynomial.laguerre as geek
Input degree
degree = 3
using np.laggauss() method
res = geek.laggauss(degree)
Resulting array of sample point and weight
print (res)
`
Output:
(array([ 0.41577456, 2.29428036, 6.28994508]), array([ 0.71109301, 0.27851773, 0.01038926]))