Python | Numpy np.legdomain() method (original) (raw)
Last Updated : 31 Dec, 2019
With the help of **np.legdomain()**
method, we can get the filter having value array([-1, 1]) in legendre series.
Syntax :
np.legdomain
Return : Return filter of array([-1, 1])
Example #1 :
import
numpy as np
from
numpy.polynomial.legendre
import
legdomain
for
i
in
range
(
5
):
`` ans
=
legdomain
+
[i, i
+
1
]
`` print
(ans)
Output :
[-1 2]
[0 3]
[1 4]
[2 5]
[3 6]
Example #2 :
import
numpy as np
from
numpy.polynomial.legendre
import
legdomain
for
i
in
range
(
4
):
`` ans
=
legdomain
+
[i
-
1
, i
+
1
]
`` print
(ans)
Output :
[-2 2]
[-1 3]
[0 4]
[1 5]
Similar Reads
- Python | Numpy np.legcompanion() method np.legcompanion() method is used to return the companion matrix of legendre series. Syntax : np.legcompanion(c) Parameters: c :[array_like] 1-D arrays of legendre series coefficients ordered from low to high. Return : [ndarray] Companion matrix of dimensions (deg, deg). Code #1 : # Python program ex 1 min read
- Python | Numpy np.legdiv() method np.legdiv() method is used to divide one Legendre series to another.It returns the quotient-with-remainder of two Legendre series c1 / c2. Syntax : np.legdiv(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Legendre series coefficients ordered from low to high. Return : [ndarray] Legendre se 1 min read
- Python | Numpy np.legmul() method np.legmul() method is used to multiply one Legendre series to another.It returns the product of two Legendre series c1 * c2. Syntax : np.legmul(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Legendre series coefficients ordered from low to high. Return : [ndarray] Legendre series coefficie 1 min read
- Python | Numpy np.legadd() method np.legadd() method is used to add one Legendre series to another.It returns the sum of two Legendre series c1 + c2. Syntax : np.legadd(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Legendre series coefficients ordered from low to high. Return : [ndarray] Array representing the Legendre se 1 min read
- Python | Numpy np.legvander() method np.legvander() method is used to returns the Vandermonde matrix of degree deg and sample points x. Syntax : np.legvander(x, deg) Parameters: x :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is c 1 min read
- Python | Numpy np.legzero() method np.legzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.legzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.legzero() method # import numpy and legzero import numpy as np from numpy.polynomial.legendre import legzer 1 min read
- Python | Numpy np.leg2poly() method np.leg2poly() method is used to convert a legendre series to a polynomial. Syntax : np.leg2poly(c) Parameters: c :[array_like] 1-D arrays of legendre series coefficients ordered from low to high. Return : [ndarray] 1-D array containing the coefficients of the equivalent polynomial. Code #1 : # Pytho 1 min read
- Python | Numpy np.legroots() method np.legroots() method is used to compute the roots of a legendre series.Return the roots of the polynomial. Syntax : np.legroots(c) Parameters: c :[array_like] 1-D arrays of legendre series coefficients. Return : [ndarray] Array of the roots of the series. If all the roots are real, then out is also 1 min read
- Python | Numpy np.legsub() method np.legub() method is used to subtract one Legendre series to another.It returns the difference of two Legendre series c1 - c2. Syntax : np.legub(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Legendre series coefficients ordered from low to high. Return : [ndarray] Legendre series coeffici 1 min read
- Python | Numpy np.legfromroots() method np.legfromroots() method is used to generate a legendre series with given roots. Syntax : np.legfromroots(roots) Parameters: roots :[array_like] Input sequence containing the roots. Return : [ndarray] 1-D array of coefficients of legendre series. Code #1 : # Python program explaining # numpy.legfrom 1 min read