Python | Numpy np.leggrid2d() method (original) (raw)

Last Updated : 31 Dec, 2019

**np.leggrid2d()** method is used to evaluate a 2-D legendre series on the Cartesian product of x and y.

Syntax : np.leggrid2d(x, y, c) Parameters: **x, y :**[array_like]The two dimensional series is evaluated at the points in the Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.**c :**[array_like] 1-D arrays of legendre series coefficients ordered from low to high.Return : [ndarray] The values of the two dimensional legendre series at points in the Cartesian product of x and y.

Code #1 :

Python3 `

Python program explaining

numpy.leggrid2d() method

importing numpy as np

import numpy as np from numpy.polynomial.legendre import leggrid2d

Input legendre series coefficients

c = np.array([[1, 3, 5], [2, 4, 6]])

using np.leggrid2d() method

ans = leggrid2d([7, 9], [8, 10], c) print(ans)

`

Output:

[[ 4751.5 7351.5] [ 5965.5 9229.5]]

Code #2 :

Python3 `

Python program explaining

numpy.leggrid2d() method

importing numpy as np

import numpy as np from numpy.polynomial.legendre import leggrid2d

Input legendre series coefficients

c = np.array([[1, 3, 5], [2, 4, 6]])

using np.leggrid2d() method

ans = leggrid2d(7, 8, c)

print(ans)

`